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Abstract. This paper deals with the dynamics of flight formations, their characteristics and their study,
at past and at present. The review would be exhaustive and present the different type of developments
that have been done on the topic. The author also express his personal view of which should be the most
interesting ways for future researches.

1 Introduction

The interest of reviewing the analytical works about relative motions is to acquire a global view of the situation
and frame future works. As it will be shown, there have been two major approaches, that depend on the used
variables: local position and velocity, or differences of orbital elements.

The study of relative motion from an analytical point of view has two major interests. The first one is the
analysis of new missions. From this point of view, an analytical approach is a strong tool to find the most stable
configurations. The second interest of the analytical approach is the modeling of perturbations which affect
intersatellite links. The goal of observing the Earth or other planets by flight formations consists in using such
links (e.g. GRACE) as data sources. The inversion of such data forms the basis of the modeling of geodynamical
parameters via the perturbation method.

The first section is dedicated to the definition and the classification of flight formations. Hill’s equations
and further developments are explained in the second section, as they have been historically the main tool to
study the dynamics of flight formations. The third section is devoted to new methods that have appeared in
the last two decades. They are based essentially on the use of differential orbital elements. Finally, conclusions
and recommendations about future work on this topic are presented.

2 What is a flight formation?

In the last decades, a large number of space missions used the concept of flight formation. Sometimes, there
is the belief that a formation is the same as a constellation. It is important to understand the differences
between both concepts. The common point of constellations and formations is that both use a certain number
of satellites with the same goal. Constellations usually use a large number of satellites (30 in the GALILEO
constellation). In the case of formations, the number of satellites is usually lower, sometimes just two satellites.
There is a second characteristic that, usually, makes a difference between formations and constellations: the
relative distances between satellites. In constellations, the satellites are moved apart by long distances, usually
thousands of kilometers. In formations, they are moved apart by middle (some kilometers) or low distances
(hundreds of meters). The definition criteria is the control of the system. The control of the constellation is done
individually, satellite by satellite, whereas the control of the formation is done through the relative distances
and velocities of satellites. The advantages of flight formations are: more possibilities, bigger security, and
smaller prize. Flight formations will enable spatial interferometry, bigger spatial telescopes, or the exploration
of Earth and planets.
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2.1 Classification of flight formations

There are many ways of classifying flight formations. From a dynamical point of view, the most interesting is
the following one:

• around a central body: some examples are: GRACE (to study the Earth’s gravity field), the A-train
(Earth observation), or TanDEM-X/ TerraSAR-X (a high precision radar interferometer for terrestrial
altimetry). The difficult point in modeling these formations is the control of secular drifts induced by
gravitational and non-gravitational perturbations.

• around a Lagrange point: the environment at Lagrange points is quite. The interest of sending formations
to Lagrange points is to avoid perturbations and to improve the control and the stability. Interferometry
missions are specially interested in these orbits. Some examples of this kind of missions are LISA or
DARWIN. As in the Lagrange points the influence of the Sun is of the same order as the one due to the
Earth, satellites have no more a central body dynamics. This paper does not deals with this dynamics
problem.

3 Working with Hill equations

Relative motion is not a new problem. In the fifties and sixties, relative motions were studied for the spatial
rendezvous problem: the final approach of a spatial spacecraft respect to another. The problem was studied
using Hill equations. They have rested as the most common tool during forty years. In the last two decades
that new approaches have appeared in the literature.

It is important to precise which are the variables used to represent the relative motion. Different possibilities
are found in literature. The first point is the position and the velocity of each satellite projected in an inertial
reference frame IJK: −→x i|IJK = (−→r i|IJK ,−→v i|IJK)

T
. One of them is chosen as the reference one, and we will

indicate it by the indice ref . All the others will be referenced generically by the indice i.
A first way of expressing relative motion is the use of difference of vectors: ∆−→x i|IJK = −→x i|IJK − −→x ref |IJK .
Such a representation is not very useful because of lack of physical sense. On the other hand, it is much more
useful to use the projection of this vectors in the RTN reference frame ∆−→x i|RTN . The RTN reference frame
is defined by the radial direction of the reference orbit(R), by its out of plane direction(N), and by a third
direction perpendicular to the others (T).

It is important to note that, even if the relative positions (
−→
δ = δR, δT , δN ) and ∆−→r i|RTN are equivalent, it

is not the same case for velocities (∆−→v i|RTN ,
−̇→
δ ), the differences between both velocities being given by Coriolis

terms.
A third way of expressing relative motions is through the differences of orbital elements ∆EO = EOi −EOref ,
where EO are the usual keplerian elements a, e, i,Ω, ω, M .

3.1 The actors of relative motion

Hill equations were first derived in Hill (1878). They are a set of differential equations that give the temporal
evolution of a body relative motion on respect to a rotating reference frame. Initially, they were deduced using

relative position and velocity (
−→
δ ,

−̇→
δ ).

It is possible to linearize the system with respect to the distance between the reference point and the body, if they
are close enough. After linearization, the equations have an analytical explicit solution without perturbations:
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These equations give the temporal evolution of a relative motion in the local reference frame (RTN), parametrized
by initial conditions, and using time as independent variable. Three major hypothesis have been done to reach
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Fig. 1. IJK and RTN reference frames

this solution: short intersatellite distances, circular reference orbit, and no perturbation.
Each time that a new perturbation is introduced, it is necessary to solve the new resulting differential equations
system. Usually, it is quite complicated to find analytical explicit solutions. Good examples of this procedure
are Schweighart & Sedwick (2001) and Tsoi et al. (2005).
There have been also a number of publications dealing with the non-circular reference orbit. The first of them,
is Lawden (1963). On this paper, Lawden presents the form of the relative position using the true anomaly (f)
as independent variable:

δR(t) = A cos f + Be sin f + CI2 (3.1)

δT (t) = −A sin f + B(1 + e cos f) +
D − A sin f

1 + e cos f
+ CI2

δN(t) =
1

1 + e cos f
(E cos f + F sin f)

where A, B, C, D, E, F are constants, e is the eccentricity, and I1, I2 are integrals that have no explicit solution.
Major inconvenient of this solution is the impossibility to present the solution in an explicit way because of the
two integrals I1, I2. Anyway, for control purposes they rest very interesting because they are more accurate than
Hill’s equations. Lawden’s equations have also been used by some authors in particular for control problems
(Carter et al. 1987; Carter 1990; Tillerson et al. 2001, 2002).

Gómez et al. (2006) have also done an interesting work trying to find high order solutions of Hill equations
in order to avoid the effects of the linearization.

4 Using differences of orbital elements

Another approach to study the relative motion has been the use of orbital elements differences: ∆EO. The
temporal evolution of the relative motion is given by the evolution of the orbital elements. We propose the
following method:

1. conversion of initial conditions expressed in terms of position and velocity to differences of orbital elements:
∆EO0 = [M(EO0)]∆−→x0|RTN

2. extrapolation of differences of orbital elements ∆EO(t) = f(EO(t), ∆EO0)

3. conversion of differences of orbital elements to position and velocity ∆
−−→
x(t)|RTN = [M−1(EO)]∆EO(t)

The method combines the advantages of using the position and velocity to express the relative motion, with
the advantages of extrapolating orbital elements. As example, it is possible to find the homogeneous solution
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of Hill’s equations, or the equivalent of Lawden’s homogeneous solution, in a complete explicit way.
Just some steps of this method can be found in the literature.
In Casotto et al. (1993), it is possible to find the third step of the method. Casotto finds linear relation between
the differences of position and velocity projected to the RTN reference frame (−→x i|RTN ), and the differences of
orbital elements (∆EO) .
Later on, Alfriend & al. introduced their ’geometrical method’, which consists in the combination of steps two
and three of our method. For the third step, the results of Alfriend are slightly different from Casotto one’s

because Alfriend uses the relative position and velocity (
−→
δ ,

−̇→
δ ).The whole of ’geometrical method’ and some

applications can be found in Schaub et al. (2002), Alfriend et al. (2000), Schaub et al. (2003), and Vadali et al.
(2001).
Even if in precedent literature the first step is not used, it is necessary to understand the effect of a variation
of orbital elements in terms of position and velocity.

5 Conclusions

In the past, relative motions were studied using relative Cartesian coordinates. This representation is still nowa-
days interesting. The use of differences of orbital elements will enable us to introduce easily new perturbations.
Anyway, it will always be necessary to combine both representations in order to assure physical understanding of
the motion. There is also a lack of publications dealing with the topology of the non-perturbed and perturbed
motion. This interesting topic is therefore to be developed. From a general point of view, the dynamics of
relative motions has not yet been studied in depth. Although this is a key feature for future missions, there is
still a lot of research to be done.
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