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A PRESCRIPTION FOR THE SOFTENING LENGTH IN FLAT DISKS
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Abstract. Whereas “soften gravity” simplifies the computation of the gravitational potential due to
continuous distributions of matter, it usually fails to give reliable values. For flat disks, λ is set to a certain
fraction of the (real) disk thickness. However, this fraction seems arbitrary and varies from one author to the
other. We have determined this fraction for axisymmetrical systems from a rigorous mathematical analysis.

1 Introduction

Newton’s generalized law for gravity exhibits a divergence as the separation |~r−~r′| between any continuous mass
element and the field point vanishes, although volume integrals are finite. In practice, this difficulty is avoided by
considering a parameter λ (the “softening” length) such that any separation writes |~r−~r′| ≈

√

|~r − ~r′|2 + λ2 6= 0
close to the singularity. For continuous flat disks, people usually set λ to some fraction of the disk thickness
arguing that λ mimics the vertical disk extension, which is certainly is correct, qualitatively. However, from

a quantitative point of view, one can not expect potential and field values better than 10% in relative using a
constant value for λ as commonly done (or any ad-hoc function). It is worth noting that “soften gravity” with
an inappropriate λ-value makes i) gravity significantly non-Newtonian and ii) models and simulations strongly
λ-dependent. Here, we propose the first reliable prescription for λ ever derived for axi-symetrical systems.

2 Potential due to an axi-symmetrical torus in terms of elliptic integrals

The potential due to any axially symmetric torus reads (e.g., Durand 1964):

Ψ(~r) = −2G

∫∫

a,z

√

a

R
ρkK(k)dadz, k =

2
√

aR
√

(a + R)2 + (z − Z)2
, (2.1)

where K(k) is the complete elliptic integral of the first kind, k is the modulus, (a, z) and (R, Z) are the
cylindrical coordinates of source points and field point respectively, and ρ is the mass density. To get a reliable
representation of Ψ near singularities, we have considered an expansion of K(k) over the complementary modulus
k′ (e.g. Gradshteyn & Ryzhik 1994):

K(k) =

∞
∑

n=0

(2n + 1)!!

2(n + 1)!!
Pn(k′)k′2n

, k′ =
√

1 − k2, Pn+1(k
′) = Pn(k′) − 1

(2n + 1)(n + 1)
, (2.2)

with P0 = ln 4

k′
. Very close to the singularity where k′ → 0, the potential is remarkably well described by

a single term, namely P0. Interestingly enough, the integration of the Poisson kernel along the z-direction is
possible analytically by setting K(k) = P0 (second order accurate in k′) in Eq.(2.1a), provided ρ remains a
“simple” function of the altitude. In particular, if the torus is vertically homogeneous (i.e. ρ depends on a
only), we can derive for Ψ an expression resembling Eq.(2.1a), namely

Ψ(~r) ≈ −2G

∫

a

√

a

R
Σ(a)kλK(kλ)da, kλ =

2
√

aR
√

(a + R)2 + λ2
, Σ =

∫

z

ρdz = 2ρh, (2.3)

where 2h is the local thickness of the torus, and λ is a function of a, h, R and Z (Pierens & Huré 2007).
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Fig. 1. Left: the quantity 1

2h

R

z
kK(k)dz resulting from the integration of the Poisson kernel in the z-direction (see

Eq.(2.1)). Right: decimal logarithm of the relative deviation between 1

2h

R

z
kK(k)dz and its approximation, kλK(kλ).

3 A prescription for the softening length in toroidal cells

Eq.(2.3a) is especially interesting because it is just the expression for the potential due to a flat (i.e. h = 0) disk
with surface density Σ, as commonly defined in the framework of soften gravity where |~r−~r′| ≈

√

|~r − ~r′|2 + λ2.
At the center of the torus (i.e. Z = 0) and assuming that the torus is symmetrical with respect to the equatorial
plane, the inferred prescription for λ greatly simplifies since we find:

ln
λ

h
≈ −1 +

4

3

h2

(a + R)2
. (3.1)

As a matter of fact, this calculus assumes h
a+R

≪ 1 and a ∼ R meaning that the torus considered here has
necessarily a small spatial extension (i.e. it is rather a “toroidal cell”). Under these conditions, Eq.(3.1)
gives λ ≈ h/e. Figure 1a shows the quantity 1

2h

∫

z
kK(k)dz determined numerically for h/a = 0.01 within

the computer precision (Huré 2005). This quantity must be compared to our O(k′2)-approximation, namely
kλK(kλ). Figure 1b displays the logarithm of the relative deviation between these two quantities (which are
both functions of space and torus size). We see that, in the neighborhood of the toroidal cell, soften gravity
gives excellent results when used with the “right” prescription for λ (the relative error is ∼ 10−6 in the present
example). The nominal choice for λ as well as a few tests will be reported in Huré & Pierens (2007).
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