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Abstract. Our aim is to numerically investigate Gamma Ray Burst (GRB) afterglows in the context of
a fireball model. This requires the accurate computation of relativistic hydrodynamic flows, with a need
for Adaptive Mesh Refinement (AMR) due to the extreme demands for resolving thin ultra-relativistic
‘shells’ propagating over vast distances. Here, we concentrate on the precise propagation evolution of such
relativistic shells in spherical symmetric, as well as axisymmetric 2D models.

For this purpose, we extended the AMRVAC software (Keppens et al. (2003)) with a capability to sim-
ulate special relativistic hydro scenarios. We use a robust second order, shock-capturing discretization in
a finite volume treatment in combination with AMR. On the numerical level, we can ensure physical con-
sistency between the primitive (ρ,~v, p) and conservative variables at limited linear reconstruction stages,
as well as at all AMR restriction and prolongation stages. Stringent test cases of special relativistic hydro
shock problems benefit optimally from our AMR strategy.

1 Introduction

GRBs are the most powerful explosions in the universe (for a recent review see e.g. Meszaros (2006)). An
important advance in our understanding of GRBs started with the discovery and detailed investigation of their
long-lasting “Afterglow” counterparts in X-Ray, optical, and radio wavelengths. In this paper we investigate
relativistic dynamics in a fireball model, in both one and two dimensional settings. In this fireball model, a
compact GRB source releases a large amount of energy in a very short timescale, ultimately producing a very
thin shell around the source expanding with ultra-relativistic velocity with all its energy converted to kinetic
energy. The resulting cold shell continues to expand and interacts with the circumburst medium in a relativistic
shock-dominated scenario. As the shell sweeps up the surrounding matter it decelerates, and the associated
radiation shifts in wavelength. Here, we concentrate on the precise propagation evolution of the relativistic shell
in spherical symmetric, as well as axisymmetric 2D models. This will be coupled to consecutive quantifications
of the spectral evolution of the produced afterglow radiation in future work.

2 Relativistic Hydrodynamic equations

The special relativistic hydrodynamic evolution of a perfect fluid is governed by the conservation of the number
of particles, and energy-momentum conservation. These two conservation laws can be written as

(ρ uµ)µ = 0 , T µν
µ = 0 . (2.1)

where ρ, ~u = (γ, γ ~v), and T µν = ρ h uµ uν + p gµν define, respectively, the proper density, the four-velocity and
the stress-energy tensor of the perfect fluid. Their definition involves the Lorentz factor γ, the fluid pressure p,
and the relativistic specific enthalpy h = 1 + e + p/ρ where e is the specific internal energy. For the (inverse)
metric gµν , we take the Minkowski metric. Units are taken where the light speed equals unity.
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These equations can be written in conservative form involving the Cartesian coordinate axes and the time
axis of a fixed ‘lab’ Lorentzian reference frame as

∂U

∂t
+

3
∑

j=1

∂F j

∂xj
= 0 . (2.2)

The conserved variables can be taken as U =
[

D = γ ρ, ~S = γ2ρ h~v, τ = γ2ρ h − p − γρ
]T

, and the fluxes are

then given by F =
[

ργ ~v, γ2ρ h~v~v + p I, γ2ρ h~v − γρ~v
]T

, where I is the 3 × 3 identity matrix.
To close this system of equations, we use the equation of state (EOS) for an ideal gas, which is the polytropic

equation with the polytropic index Γ,
p = (Γ − 1) ρ e . (2.3)

At each time step in the numerical integration, the primitive variables (ρ,~v, p) involved in flux expressions
should be derived from the conservative variables U resulting in a system of nonlinear equations. One can
manipulate this system to a single equation for the pressure p,

τ + D − γ(p)D −
p + Γp(γ(p)2 − 1)

Γ − 1
= 0 , (2.4)

which, once solved for p yields ~v =
~S

τ+p+D . The nonlinear equation (2.4) is solved using a Newton-Raphson
algorithm.

3 A Riemann test problem: ultra-relativistic wall impact

In a 1D test case, a cold fluid hits a wall and a shock front propagates back into the fluid, compressing and
heating it as the kinetic energy is converted into internal energy. In fact, behind the shock the fluid becomes
at rest. This test has an analytical solution in planar symmetry as considered by Blandford & McKee (1976),
and the jump conditions are

p2 = ρ1 (γ1 − 1) (γ1Γ + 1) , ρ2 = ρ1
γ1Γ + 1

Γ − 1
, vsh = (Γ − 1)

γ1v1

γ1 + 1
. (3.1)

These give the post shock pressure p2 and density ρ2 values in terms of the incoming density and Lorentz factor,
together with the shock propagation velocity vsh.

In our test we take the same initial conditions than in the recent paper by Zhang & MacFadyen, (2006),
where a cold fluid p = 10−4 with a density ρ = 1.0 has an impact velocity of v1 =

(

1.0 − 10−10
)

(which
corresponds to a Lorentz factor γ = 70710.675). The temperature after the shock becomes relativistic, and
therefore we take the polytropic index Γ = 4/3. Hence the shock velocity is vsh = 0.33332862. The AMR
simulation is done with 20 cells on the base level and 4 levels on the spatial range 0.0 < x < 1.0. The result at
t = 2.0, with the reflective wall at x = 1, is shown in Fig. 1. In this test, because of the constant state behind
the shock, the maximum impact Lorentz factor that can be achieved numerically is limited only by the precision
of the Newton-Raphson subroutine. This test is important to demonstrate its accurate treatment, in view of
the intended simulations aimed at afterglows in GRBs. Indeed, in the shell-frame, the circumburst medium hits
the dense shell with a high Lorentz factor. In a process similar to what is found in the above test, the kinetic
energy of the impacting medium is converted to thermal energy, thus heating the external medium. Viewed
in the lab frame where the shell is moving, the swept up circumburst medium will have similarly high Lorentz
factor and will form a hot shocked layer ahead of the contact interface.

4 Models for relativistic dynamics in GRB afterglow phases

4.1 Isotropic explosions

In this simulation we consider an ISM with uniform density nISM = 1cm−3. In this low density medium,
we place a relativistic uniform shell at R0 = 1016cm from the central engine with a density nshell. According
to Woods & Loeb (1995), the interaction of the shell with the ISM becomes appreciable at this distance, and has
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Fig. 1. Left: One-dimensional shock heating problem in planar geometry at t = 2.0. The computational grid consists

of 20 zones with 4 levels of refinement. The exact solution is shown in solid lines. Middle & right panel: The variation

of the Lorentz factor of the shell as a function of time. Middle: For the entire simulated time interval during which

the shell propagates from R0 = 1016cm to R = 300 × R0. Right: during the times when the shell decelerates as in the

self-similar Blandford-McKee phase.

an initial Lorentz factor of γ = 100 (note that γ ≥ 100 in order to have a shell which is optically thin to gamma-
rays Woods & Loeb (1995), Sari & Piran (1995)). We assume the energy E = γ 4 π R2

0 δ nshell c
2 = 1052ergs, as

we consider a burst produced in t = 10s.
The shell’s lab-frame thickness at this position is set to δ ≃ R0/γ2 = 1012cm. The ISM and the shell are

cold, and their initial pressure is set p = 10−4 × nISM mp c2. This then yields a relativistic scenario where
the energy of the thin shell is dominated by kinetic energy. In this simulation we use a constant polytropic
index Γ = 4/3. The interaction shell-ISM is dominated by the appearance of a forward shock, across which
the temperature of the swept up ISM becomes relativistic. In the shell itself, the weak internal thermal energy
induces a weak spreading of the shell, i.e. the thickness of the shell slightly increases. For this simulation, we
use an effective resolution of 1536000 zones valid at the highest allowed grid level 10. The shell is then resolved
by about 153 cells. We need to use a very high resolution to avoid any numerical diffusion which may cause an
artificial (i.e. not related to the thermal effect mentioned above) spreading of the shell. We made sure that we
always use the highest grid level 10 for resolving the forward and associated reverse shock, as both are of prime
importance to determine the precise deceleration time.

In this AMR simulation, we resolve all four regions which characterise the initial interaction between an
outward moving relativistic shell and the cold ISM. These are (1) the region in front of the forward shock
where ISM material is at rest, (2) the swept up shocked ISM region between the forward shock and the contact
discontinuity between shell-ISM matter, with heated ISM matter that has passed through the forward shock,
(3) the part of the shell material which has been traversed by the reverse shock, and (4) the part of the shell
which is at yet non-shocked.

In this proceeding contribution, we focus on the deceleration of the shell as a direct consequence of the
swept-up matter. The shell sweeps up a mass Mshell/γ at a distance Rγ ∼ 5.42 × 1016cm. Mshell = E

γ c2 the

initial mass of the shell. However, at this distance the reverse shock has only crossed about 5% of the initial
shell. The near-total deceleration of the shell plus the shocked ISM matter takes place when the two shocks
in the configuration convert an important fraction of the kinetic energy to thermal energy (this conversion in
fact depends on whether the reverse shock is relativistic or classical). Note that the sweptup ISM receives both
significant kinetic and thermal energy. In the first phase of the deceleration, the maximum Lorentz factor of
the shell decreases gently from 100 at a distance R ∼ 2.5 × 1017cm to 80 at a distance 4.3 × 1017cm. At the
former distance, the mass of swept up ISM is of the order of the initial mass of the shell.

A sudden deceleration of the shell happens at the latter distance 4.3×1017cm from the central engine, where
the Lorentz factor drops from γ = 80 to γ = 30. This drop of the maximum Lorentz factor that is seen in Fig. 1
marks the time where the reverse shock reaches the back end of the initially cold shell, meanwhile converting a
fraction of its kinetic to thermal energy. Up to this time, the maximal Lorentz factor corresponds to the Lorentz
factor of the non-shocked shell part. When the reverse shock completely has crossed the shell, the maximal
Lorentz factor plotted then corresponds to the Lorentz factor of the shocked ISM-shell, which turns out to be
30. In the later stages, the extent of the shocked ISM layer situated between the front shock and the contact
discontinuity becomes comparable to the thickness of a blast wave R/4γ2

(2) solution (Kobayashi & Sari, 2000).

From this distance 14.0×1017cm, the deceleration starts to follow the analytical solution of Blandford & McKee.
The transition to the essentially non-relativistic Sedov-Taylor phase for blast wave evolution starts at a distance
R > 30 × 1018cm, which is shifted from the analytical estimate given by l ∼ (E/nISM m)1/3 ∼ 1018cm. This
difference can be understood from the fact that only the front part of the entire structure follows the analytic
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Fig. 2. The density, pressure and Lorentz factor contours at different times for the 2D shell simulation. Left: when the

shell reach R = 1017 cm. Middle: R = 1.5 × 107 cm. Right: at R = 2.0 × 107 cm .

self-similarity assumption.

4.2 Axisymmetric 2D shell geometries

As the explosions in reality will likely occur anisotropically, we need to consider ultra-relativistic shell dynamics
in at least 2D settings. Assuming alignment along the polar regions of the source, the shell can be still assumed
as axisymmetric, but has a prescribed initial opening angle. The resulting afterglow radiation will likely also
be influenced by the precise multidimensional aspects of propagation of the jet in the ISM. We present 2D
simulations of a relativistic cold shell, propagating in the uniform ISM with a density n = 1cm−3. The
simulated shell this time has an energy E = 1049ergs and a Lorentz factor γ = 100. We start the simulation
with a uniform shell of thickness δ = 1014cm at a distance R0 = 1016cm from the central engine. The half open
angle of the shell is ∆θ = 1◦, thus initialy, we have γ > 1/∆θ. Also, we assume the initial velocity of this shell
to be purely radial.

Fig. 2 shows the evolution of the Lorentz factor and density. As in the 1D case, in a first phase the shell
propagates with a near-constant Lorentz factor and undergoes a weak thermal spread in the radial direction.
The spreading in the bottom part of the shell is also affected by the appearance of a very low pressure and
density region below the shell, as a near vacuum is left when the shell propagates upwards. In the top layers
of the shell, it is due to the increase of the thermal energy in the zone between the contact discontinuity and
the reverse shock. The non-shocked shell also spreads laterally with the initial velocity of order v ∼ 0.017 c.
However, as soon as the reverse shock has crossed the entire shell, shell and shocked ISM start spreading
sideways with lateral velocity of v ∼ 0.74c. Due to this fast lateral expansion, the shell decelerates faster, since
more matter gets accumulated.

We acknowledge financial support from the Netherlands Organization for Scientific Research, NWO grant 614.000.421, and for the
use of computing facilities by NCF. ZM acknowledge financial support from APC, Paris 7.

References

Blandford, R. D. & McKee, D. G. 1976, Physics of Fluids, 19, 1130

Keppens, R. et al. 2003, Comp. Phys. Commun., 153, 317

Meszaros, P. 2006, Rep. Prog. Phys., 69, 2259

Sari, R. & Piran, T. 1995, ApJL, 455, L143

Kobayashi S. & Sari R. 2000, ApJ, 542, 819

Woods E. & Loeb A. 1995, ApJ, 453, 583

Zhang W. & MacFadyen, A.I. 2006, ApJSS, 164, 255


