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Abstract.

We briefly summarise and further discuss the observational implications of the model-independent scheme
recently put forward by us for the reconstruction of dark energy. The scheme employs rather weak geometrical
features of the luminosity-distance relation motivated by recent observations. Using the SNLS supernovae
data, the reconstructed luminosity-distance curves best fitting the data are shown to favour a Universe with
a varying dark energy density, expanding at a slower rate than the ΛCDM model. The ΛCDM model.
however, cannot be ruled out at high significance levels, in line with other recent reconstructions. We
highlight the degeneracy concerning the CDM density parameter Ωm0

, which acts as a barrier against a
conclusive determination of whether the dark agency is the cosmological constant.

1 Introduction

The evidence that our Universe is currently undergoing a phase of acceleration at the present epoch is now
overwhelming. Not only is this accelerated dynamics measured directly in the spectral and photometric data
from high redshift surveys Supernovae data (Riess et al. 2004; Astier et al. 2006), it is also independently
confirmed by observations of the Cosmic Microwave Background (CMB) anisotropy power spectrum (Spergel et
al. 2003; Spergel et al. 2006) as well as observations of large scale structure (Tegmark et al. 2004; Seljak et al.
2005). The favoured explanation for this behaviour is that a substantial proportion (70%) of the energy density
of the Universe is presently in the form of an effective fluid – dark energy – which is smooth on cosmological
scales and which possesses a negative pressure. A fundamental question at present is what is the nature of this
dark energy and importantly whether it is different from the cosmological constant with an Equation Of State
(EOS) equal to −1.

Given the absence of a truly satisfactory theoretical model that can be embedded within candidate theories
of quantum gravity, an alternative path has been to take the inverse approach of reconstructing the properties
of the dark energy, including its EOS, from the Supernovae (Astier et al. 2006), and more recently the Baryon
Acoustic Oscillation (BAO) data (Eisenstein et al. 2005). Many attempts have recently been made to perform
such reconstructions. These take a spectrum of forms, ranging from schemes that assume specific functional
forms for the cosmological parameters (Sahni et al. 2003; Szydlowski & Czaja 2003; Elgaroy & Multamaki 2006)
to schemes employing more general parametrised forms (Alam et al. 2004a; Alam et al. 2004b). There have
also been attempts at constructing model-independent schemes which can recover the cosmological parameters
directly from the data without making specific assumptions regarding their functional forms (Wang & Mukherjee
2004; Shafieloo et al. 2006).

Recently a new model-independent reconstruction scheme was put forward which relied on rather weak
assumptions regarding the geometrical features expected to be satisfied by the luminosity-distance relation (Fay
& Tavakol 2006). Using this scheme together with observational data, including the recently released Supernova
Legacy Survey (SNLS) and BAO data, allowed the reconstruction of the models and the corresponding EOS
best fitting the data.

Here we give a brief presentation of these results and further discuss their observational implications. Fur-
thermore, employing the geometrical form of the luminosity-distance relation we explain why the Supernovae
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data do not tightly constrain the cold dark matter density parameter Ωm0
or set a sharp lower bound on the

equation of state. We also use the baryon acoustic oscillation peak in the SDSS data to constrain Ωm0
and find

the best fit to be in agreement with the CMB data.

The paper is organised as follows. After a very brief account of our scheme in Sect. 2 we briefly summarise
the reconstruction results in Sect. 3. This is done first assuming a reasonable value for the cold dark matter
density parameter. Then after a discussion demonstrating the degeneracy of the luminosity distance with respect
to this parameter, baryon acoustic oscillation data is used to constrain this parameter. Finally Sect. 4 contains
a brief summary of the results and further discussions.

2 The Scheme

The model-independent reconstruction scheme proposed in Fay & Tavakol (2006) was based on employing
rather weak constraints on the geometrical from of the luminosity-distance dl curves which are motivated by
observations. These constraints concern the first three derivatives of the luminosity-distance dl in the form.

(I) d′l ≥ 0, where a prime denotes differentiation with respect to the redshift z. This condition is trivially
satisfied by for any expanding Universe and is solidly supported by all observations.

(II) d′′l ≥ 0. This condition can be shown to be satisfied by any Universe which is currently accelerating and
which in the past tended to an Einstein-de Sitter model.

(III) d′′′l ≤ 0. This condition can be shown to be satisfied at all redshifts by both Einstein-de Sitter and ΛCDM

models. This is important as these two models are those commonly accepted as representing the early
and late dynamics of the Universe.

These conditions are fully compatible with all the current high resolution observations. This provides an
important justification for their use in constraining the reconstructed luminosity-distance curves.

3 Results

The reconstruction employs constraints from the SNLS supernovae data. It can proceed in two ways. Either one
assumes that a value is given for Ωm0

from observations or specifies Ωm0
from the baryon acoustic oscillation

peak in the SDSS data. Both these approaches were attempted in Fay & Tavakol (2006). Here we briefly
summarise each.

Concerning the first approach, we give a summary of the results given in (Fay & Tavakol 2006) by plotting
in Fig. 1 the subset of reconstructed dl curves (represented as black in the figure) which are close to the curve
best fitting the data with the χ2 values given in the range 110.67 < χ2 < 111.7. We note that 110.67 is
the smallest value for χ2 obtainable using our reconstruction method. For comparison we have also plotted
in this figure the corresponding ΛCDM model with χ2 = 114 (gray line on the figure). As can be seen all
these reconstructed curves have a χ2 slightly smaller than that corresponding to the ΛCDM model and thus
fit the data better. They predict a slower expansion rate than the ΛCDM model whose dl curve lies above
this reconstructed set. We note, however, that even though the ΛCDM model would be ruled out at 68.3%
confidence level (assuming that the best fitting dl curve does not correspond to a cosmological theory with more
than three free parameters), it cannot be ruled out at 95.4% confidence level.
From the reconstructed dl curves it is possible to obtain their corresponding EOS, which are shown in Fig. 2.

The reconstructed EOS all allow better fits to the data than the ΛCDM model and predict values close to the
ΛCDM model of −1 up to the redshift of around z = 0.45. Above this redshift the EOS in general increase to
take values slightly larger than zero.

3.1 Degeneracy and constraining of Ωm0

The above reconstruction scheme does not provide any information about the CDM density parameter Ωm0

which has to be assumed a priori. This is a consequence of the fact that the luminosity-distance relation is
determined purely by the Friedmann equation which is highly degenerate with respect to this parameter.
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Fig. 1. Plot of a set of reconstructed luminosity-distance curves (lower blak lines) close to the best fitting curve with their χ2 value lying

in the range 110.67 < χ2 < 111.7, together with the corresponding luminosity distance curve for the ΛCDM model (upper gray line),

whose χ2 = 114.
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Fig. 2. Plot of the reconstructed EOS corresponding to the reconstructed luminosity-distance curves plotted in Fig. 1.

A transparent way of seeing this degeneracy is by considering a dark energy model with a constant EOS
given by (w − 1). The corresponding Friedmann equation is then given by:

H2 = H2
0

[

Ωm0
(1 + z)3 + ΩDE0

(1 + z)3w
]

Re-writing the CDM density parameter as Ωm0
= Ω1m0

+ Ω2m0
, the Friedmann equation becomes:

H2 = H2
0

[

Ω1m0
(1 + z)3 + Ω2m0

(1 + z)3 + ΩDE0
(1 + z)3w

]

where the subscript DE0 indicates dark energy at z=0. Now this form of H(z) can be viewed as a new dark energy
model with a different CDM density parameter Ω1m0

, and a different dark energy density ρDE represented by
the last two terms in this expression. This demonstrates clearly that given a Hubble function we can construct
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different representations with different effective CDM density parameters and dark energy components, but
with identical luminosity-distance functions dl. Thus the luminosity-distance dl is potentially highly degenerate
with respect to the CDM density in Universe. This is important in determining the true nature of dark energy.

To constrain Ωm0
one requires further observational information. Using the recent BAO data (Eisenstein et

al. 2005) to constrain the reconstructed luminosity-distance curves, we found best fit for Ωm0
to be Ωm0

= 0.27.

4 Discussion

We have briefly summarised a model-independent scheme for the reconstruction of dark energy, recently put
forward in (Fay & Tavakol 2006). Using the SNLS supernovae data, we have reconstructed a set of luminosity-
distance curves together with their corresponding reconstructed EOS. Confining ourselves to the neighbourhood
of the best fitting curve provides a sharper representations of the results given in (Fay & Tavakol 2006). These
reconstructions demonstrate that the luminosity-distance curves best fitting the data correspond to the Universe
expanding slower than a ΛCDM model with a varying dark energy density. Despite this, however, the ΛCDM

model cannot be ruled out.
We have highlighted the degeneracy concerning the CDM density parameter Ωm0

. An important conse-
quence of this degeneracy is that it acts as a barrier for a realistic observer (whose observations inevitably
involves error bars) to determine conclusively whether the dark energy density is truly constant. This is signif-
icant in view of the fact that one of the urgent theoretical questions at present is to differentiate between the
dark energy models and in particular to determine whether the dark agency is the cosmological constant.

We have also summarised how the recent baryon oscillation data can be used to give the best fit value
Ωm0

= 0.27, in close agreement with CMB data (Spergel et al. 2003; Spergel et al. 2006). Future observations
- particularly the expected SNLS data - will provide more accurate reconstructions which will in turn sharpen
the bounds on the most likely value for Ωm0

and the corresponding EOS. This will give a better indication as
to whether the best fitting model is closer or further away from the ΛCDM model.
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Spergel, D.N., Bean, R., Doré, O., et al. 2006, astro-ph/0603449

Tegmark, M., Strauss, M.A., Blanton M.R., et al. 2004, Phys. Rev. D, 69, 103510

Seljak, U., Makarov, A., McDonald, P., et al. 2005, Phys. Rev. D 71, 103515

Eisenstein, D. J., Zehavi, I., Hogg, D.W., et al. 2005, ApJ, 633, 560

Sahni, V., et al. 2003, JETP Lett., 77, 201

Szydlowski, M., Czaja, M. 2004, Phys. Rev. D, 69, 023506

Elgaroy, O., Multamaki, T. 2006, astro-ph/0603053

Alam, U., Sahni, V., Deep Saini, T., Starobinsky, A.A. 2004a, MNRAS, 354, 275

Alam, U., Sahni, V., Starobinsky, A.A. 2004b, JCAP, 008, 0406

Wang, Y., Mukherjee, P. 2004, ApJ, 606, 654

Shafieloo, A., Alam, U., Sahni, V., et al 2006, MNRAS, 366, 1081

Fay, S., Tavakol, R. 2006, Phys. Rev. D, 74, 083513


