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RELATIVISTIC ASTROMETRY AND SYNGE’S WORLD FUNCTION

P. Teyssandier! and C. Le Poncin-Lafitte?

Abstract. Almost all of the studies devoted to relativistic astrometry are based on the integration of the
null geodesic differential equations. However, the gravitational deflection of light rays can be calculated by
a different method, based on the determination of the bifunction giving half the squared geodesic distance
between two arbitrary points-events, the so-called Synge’s world function. We give a brief review of the
main results obtained by this method.

1 Introduction

With advances in technology, it will become indispensable to determine numerous relativistic effects in the
propagation of light beyond the first order in the Newtonian gravitational constant G, in particular in the area
of space astrometry. The Global Astrometric Interferometer for Astrophysics (GAIA, Perryman et al. 2001) is
already planned to measure the positions and/or the parallaxes of celestial objects with typical uncertainties
in the range 1-10 parcsecond (pas) whereas the Laser Astrometric Test Of Relativity (LATOR) mission will
measure the bending of light near the Sun to an accuracy of 0.02 pas (Turyshev et al. 2004). In this last
case, it is clear that the effects of the second order in G must be taken into account. To obtain a modelling of
the above-mentioned projects, it is necesssary to determine the deflection of light rays between two points x4
and zp of space-time. In almost all of the theoretical studies devoted to this problem, the properties of light
rays are determined by integrating the differential equations of the null geodesics. This procedure is workable
as long as one contents oneself with analyzing the effects of first order in G, as it is proven by the generality
of the results obtained in the litterature (Klioner 1991, Klioner & Kopeikin 1992, Kopeikin 1997, Kopeikin &
Schéfer 1999, Kopeikin & Mashhoon 2002, Klioner 2003). Unfortunately, analytical solution of the geodesic
equations requires cumbersome calculations when terms of second order in G are taken into account, even in
the case of a static, spherically symmetric space-time (Richter & Matzner 1982, 1983). However, an alternative
approach exists and seems to be promising. Based on the Synge’s world function and variational properties of
geodesic, it precisely does not require the knowledge of the geodesic and directly provides the time delay of light
and the direction of a ray at the point of reception, i.e. at the observation point. In this work we derive the
general expression of the angular separation between two point light sources as measured by a given observer
in arbitrary motion. We show that the angular distance is fully determined if we calculate several ratios which
can be obtained from the knowledge of the Synge’s world function.

Throughout this paper, c is the speed of light in a vacuum and G is the Newtonian gravitational constant.
The Lorentzian metric of space-time Vj is denoted by g. We adopt the signature (+ — ——). We suppose that
space-time is covered by some global coordinate system 2 = (2, z%). We assume that the curves of equations
x' = const are timelike in the neighbourhood of the observer. This condition means that ggo > 0 in the vicinity
of the observer. We employ the vector notation @ in order to denote either the ordered set (a',a?,a?), or
the orderer set (a1, az,a3). Given a = (a',a?,a®), for instance, a.b denotes a’b® if b = (b',b2,03) and a’b; if
b = (b1, b2, b3)), the Einstein convention of summation on repeated indices being used in each case. The quantity
la| denotes the ordinary Euclidean norm of a : |a| = (8;;a’a?)/? if @ = (a',a?,a?), and |a| = (67 a;a;)"/? if
a = (a1, az2,a3). The indices in parentheses characterize the order of a term in a perturbative expansion. Theses
indices are set up or down, depending on the convenience.
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2 Angular distance as measured by an observer in arbitrary motion

To begin with, let us consider a light ray I" received at point x, = (ct,, ,) and let us recall how is defined the
direction of this ray as measured by an observer O(u) moving at z, with a unit 4-velocity u. The three-space

relative to the observer O(u) at point x, is the subspace H,(f’n) (u) of tangent vectors orthogonal to u (see Fig.

1).

I,

Fig. 1. Angular distance as measured by an observer at point z,

An arbitrary vector V' at x, admits one and only one decomposition of the form:

V=V, +V. (2.1)

|u u )

where V), is colinear to the unit vector u and V7, is a vector of the three-space Hg‘? (u). Since Vi, and u are
orthogonal, one has:

Vi, = (w.V)u (2.2)

‘u
and
Vi,=V—-(wV)u. (2.3)

The vector V|, is called the (orthogonal) projection of V' onto the three-space relative to the observer O(u).
Its magnitude |V, |=+/—V.,.V], is given by

VL,

= VW V)E V2. (2.4)

The direction of vector V' as seen by the observer O(u) is the direction of the unit spacelike vector V[ defined
as:
P A
TV,

V—(uV)u
B (wV)2—-Vv2 (23)

u

Consider now a light ray I' received at x, and denote by [ a vector tangent to I' at x,. In this work, we always
assume that a vector tangent to a light ray is a null vector and is future oriented, so that:

=0, u.l > 0. (2.6)
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The direction of the ray I' as measured by the observer O(u) is the direction of the vector I . By using Eq.
2.5, and then taking into account Eq. 2.6, it is easy to see that:
l
N =——u. 2.7
I (2.7)

Let IV be an other light ray received at z,. If I’ denotes a vector tangent to I'V at x,, the direction of IV as
observed by O(u) is given by Eq. 2.7 in which I’ is substituted for I. As a consequence, the angular separation
between I' and I as measured by O(u) may be defined as the angle ¢, between the two vectors [}, ~and I'f,

belonging to the same subspace H,(ff,) (u) (see Soffel 1988, Brumberg 1991). Angle ¢, may be characterized
without ambiguity by relations as follow:

cosp, =17, 07,, 0<¢,<m. (2.8)

Taking into account properties of a light ray, we have the following relations:

? =g, 1?=g,l"". (2.9)
As u is an unitary vector, we can express (1/u)? with guutu” =1 as follows:
ﬁ = goo + 2g0i3° + gijﬁiﬁj , (2.10)
where PR
Bt = d—; = ?flt' (2.11)

Finally, substituting Eq. (2.9-2.11) into Eq. (2.8) yields the fundamental formula:

Q=11 —1;
sin2 fu = _1 iQ g7t — Bl — L) , (2.12)
2 41 W) 14 pml)1+p71) |

where l .
lo=1,L;==, I,=1,1=-=1. (2.13)
lo 1

The determination of the angular distance thus requires explicit computations of the ratioszz and Z; They can
be obtained by the integration of null geodesic equations. However we will show that they result easily from
the knowledge of the Synge’s World function.

2.1 World function and relativistic astrometry

Synge’s world function is a scalar function of the base point z, and the field point xs. It is defined by Synge
(1964):

1t o dzt dz¥
o, ) = 5/0 G (2 () S (2.14)

and the integral is evaluated on the unique geodesic I',s that links z, to x4, A being an affine parameter. A
fundamental property of €2 is to give an important information concerning the covariant components of the
vectors tangent to I, at z, and x4 respectively:

dx¥ oN

(g/wﬁ>wo = _8—%(330’333)7 (215)
dx” oN

(95) EZ A (210)

If I'ys is a light ray, we can consider x,, as the observation point. Moreover, in this case, we have:
Nz, z5) =0. (2.17)

We recently show that explicit determination of {2 can be obtained from the integration of Hamilton-Jacobi
equations without the knowkledge of T'ps (Le Poncin-Lafitteet al. 2004). All this means that determination of

ratios E and ﬁ require the following steps:
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e to determine €2 by solving Hamilton-Jacobi equations,
e to impose the condition 2 = 0,

e to compute the following relation:
~  00/oxt
li=—=-—2. 2.18
081/ 00 (2.18)

3 Conclusions

In this paper, we give the general and rigorous expression of the observed angular distance between two point
sources of light. The fundamental formulae (2.12) and (2.18) show that the theoretical calculation of the angular
distance can be carried out when the world function is known. In this idealized sense, one can say that the
problem of space astrometry involves one and only one unknown function. An other important point is that
the aberration and the gravitational deflection of light cannot be treated as completely distinct phenomena.
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