
SF2A 2006

D. Barret, F. Casoli, T. Contini, G. Lagache, A. Lecavelier, and L. Pagani (eds)

TIDAL EFFECTS IN EXTRASOLAR PLANETARY SYSTEMS
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Abstract. With the discovery of new extrasolar planetary systems day after day, we have to understand
the physical processes which are driving the dynamical evolution of such systems. We focus here on the tidal
processes acting between stars and their giant fluid planets. We describe briefly our new theoretical results
on the hydrodynamical tides (equilibrium and dynamical tides). In particular, we present the complete set
of dynamical equations governing the tidal evolution which we have derived in a consistent way and for the
most general case: eccentric orbits, non synchronized components, general inclination between the orbital
spin and those of components.

1 Astrophysical motivation

The principal astrophysical motivation of this work is the study of the dynamics of planetary systems. In the
solar system, the tidal effects acting on giant planets and their satellites are still not understood: at best, their
modeling involves adjustable parameters. The same is true for the extra-solar planetary systems, of which we
have now various examples. Many questions remain open concerning the physical processes that are responsible
for the tidal dissipation, but these can now be constrained by the orbital properties of the extra-solar planetary
systems (semi-major axis, eccentricity, obliquity and stability). The dynamical evolution of binary systems has
received much attention already, but often some simplifying assumptions have been made, such as neglecting
the relative inclinations of the orbital and rotational spins. That is why we consider here the most general case,
with non-zero eccentricity and inclinations.

2 The cause of the dynamical evolution of binary systems: the energy dissipation

The dynamical evolution of binary systems can be summarized as follows. In the initial state, the keplerian
orbits of the two components are elliptical, their rotation are not synchronized with the orbital motion and
their spins are not aligned with the orbital spin. The final state is that of minimal energy, where the orbits
are circularized, where the rotation of both components are synchronized with the orbital motion and where
all spins are aligned. The rate at which the systems evolves toward this final state depends on the physical
processes that are responsible for the conversion of kinetic energy into heat.

3 The tidal velocity field and the energy dissipation processes

The tidal potential induces flows inside giant planets (or stars) which are submitted to dissipation processes.
Those can be classified in two types. The first one is the equilibrium tide which is a large-scale circulation
induced by the hydrostatic adjustment of the planet (or of the star) to the perturbation of the tidal potential.
On the other hand, tides excite the low frequencies eigenmodes of the planet (or of the star) such as gravity
waves (in stably stratified regions), inertial waves and the associated mixed modes, namely the gravito-inertial
waves (in stably stratified regions) (see Fig. 1); this is the dynamical tide.
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Fig. 1. The dynamical tide in a fluid planet: the eigenmodes are excited by the tidal potential (2Ω, N , fs are respectively

the inertial, Brunt-Väisälä and acoustic cut-off frequencies).

The two modes of dissipation of kinetic energy into heat in fluid planets and stars are the viscous friction

due to the action of turbulence on tidal flows inside convective regions and the radiative damping in stably
stratified zones. Viscous friction acts on the equilibrium tide and on the dynamical tide (the inertial waves)
inside the convective envelope of giant planets and of solar-type stars, while radiative damping has a negligible
effect on the equilibrium tide but a strong impact on the dynamical tide (the gravity and the gravito-inertial
waves) (cf. Zahn 1966a,b-1975-1977, Mathis 2005b and references therein).

4 The equilibrium tide

In the most general case, the differential rotation of the components (cf. Mathis & Zahn 2005a) and their
relative inclinations are taken into account (see Fig 2).

Fig. 2. Binary system in the general case where the relative inclinations are taken into account. The Euler angles of the

orbit are its inclination I , the argument of the periastron ω, and the longitude of the ascending node Ω∗. Those of the

components are the obliquity ε, the sideral angle Θ, and the precession angle φ.

The macroscopic velocity field is expanded as:

~V = r sin θ Ω (r, θ) êϕ + ~VT, (4.1)
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where the first term on the right-hand side is the azimuthal field associated with the differential rotation, and
Ω the angular velocity, while ~VT corresponds to the tidal flow. r, θ, ϕ are the spherical coordinates with respect
to the equatorial plane, and êϕ is the unit vector in the azimuthal direction.

We may assume that the equilibrium tide is a small perturbation to the hydrostatic equilibrium. Thus, we
proceed with the following linear expansion for every scalar quantity, X :

X (r, θ, ϕ, t) = X(0) (r) + X(1) (r, θ, ϕ, t) , (4.2)

X(0) and X(1) being respectively associated with the hydrostatic configuration and with the tidal perturbation.
Then, we split all equations and functions in two parts:

~VT = ~VI + ~VII and X(1) = XI + XII ; (4.3)

• System I which describes the adiabatic response of the star to the tidal potential, and which is in phase
with it: it is the adiabatic tide;

• System II which describes the response induced by the dissipative processes (here the viscous friction
due to turbulence in the convective envelope), which is in quadrature with the perturbing potential: we
call it the dissipative tide.

Those expansions are then introduced in the system formed by the equation of dynamics

ρ
[
Dt

~V + 2~Ω ∧ ~V + ~γ
(

~V
)]

= −~∇P + ρ~∇U (~r, t) + ρ~∇φ + ~FV

(
νt, ~V

)
, (4.4)

the equation for the mass conservation
Dtρ + ~∇ ·

(
ρ~V

)
= 0, (4.5)

the entropy equation
DtS + ~V · ~∇S = 0, (4.6)

and the Poisson equation for the gravitational potential

∇2φ + 4πGρ = 0. (4.7)

Here Dt = ∂t + Ω∂ϕ and ~γ(~V ) = r sin θ ~V · ~∇Ωêϕ. ρ, P , S, φ are respectively the density, the pressure, the
macroscopic entropy and the gravitational potential. U (~r, t) is the tidal potential while the action of turbulence
on the tidal flow in convective envelopes is modeled through an eddy-viscosity, νt. The treatment of Eq. 4.4,
4.5, 4.6 and 4.7 yields the velocity field of the adiabatic tide, ~VI, and that of the dissipative tide, ~VII. Then,
we get the perturbation of the gravific potential associated to the dissipative tide, φII, which drives the secular
dynamical evolution of the binary system. We directly deduce the perturbing function which is the most useful
to get the complete set of the dynamical evolution equations:

RII =
M1 + M2

M1
φII (r ≥ R) = −

∑

{m,j,p,q}∈D
{RII;m,j,p,q (Ω, νt; ε, a, e, I)} . (4.8)

The sum over m, j, p, q corresponds to the sum over the different Fourier components of the tidal potential.
Using the method given by Yoder (1995), we deduce the equations for the rotation rate and the obliquity of
each component

{
I dΩ

dt
= ΓT = −

∑
{m,j,p,q}∈D {mRII;m,j,p,q (ε, a, e, I)}

IΩ d
dt

cos ε = −
∑

{m,j,p,q}∈D {(j − m cos ε)RII;m,j,p,q (ε, a, e, I)} ,
(4.9)

while the Lagrange equation leads us to the evolution equations for the semi-major axis, the eccentricity and
the inclination of the orbital plane:
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(4.10)

These equations may be integrated to describe the evolution of any particular system, from given initial condi-
tions. Then one can simply compare the characteristic time-scales for the synchronization tsync = −I (Ω − n)/ΓT

and the circularization tcirc = −dt/d ln e with the observed properties of a sample of planetary systems. Our
treatment is thus a generalization of previous treatments of the equilibrium tide, where we have taken into
account for the first time all the relative inclinations.
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Fig. 3. The adiabatic equilibrium tide in an inclined binary component. The tidal potential has two angular modes

l = 2, m = 2 and l = 2, m = 1, the m = 1 mode being due to the relative inclination between the orbital spin and that

of the component. We show the angular function of each mode of the tidal potential, U , relative to the line component-

companion, and the corresponding poloidal and toroidal parts of the adiabatic tide, ~V P

I and ~V T

I , for an homogeneous

sphere at r/Rs = 0.95 where Rs is the sphere radius. The dissipative tide ~VII has a much weaker amplitude than the

adiabatic one, but the same spatial behavior than its toroidal components ~V T

I .

5 Dynamical tide

In parallel, we have undertaken some improvements in the description of the dynamical tide, inside giant planets
and stars. Our first contribution has been to generalize the previous treatment of the dynamical tide inside stably
stratified regions by taking into account simultaneously, in the same way as it has been done for the equilibrium
tide, the differential rotation and the relative inclinations in the system. The next step, in collaboration with
the team of Michel Rieutord, will aim at a better description of the inertial waves inside convective regions,
and at the excitation of the gravito-inertial waves by the tidal potential at the interface between convection and
radiation zones.
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