
SF2A 2006

D. Barret, F. Casoli, T. Contini, G. Lagache, A. Lecavelier, and L. Pagani (eds)

EXCITATION OF SOLAR P MODES.
EFFECT OF THE ASYMMETRY OF THE CONVECTION ZONE
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Abstract. Excitation of stellar p modes by turbulent convection is investigated. The aim is to take
into account the asymmetry of up- and downflows created by turbulent plumes through an adapted closure
model. We built a generalized two scale mass flux model (GTFM) that includes both the skew introduced
by the presence of two flows and the effect of turbulence within each flow. The plume dynamics modelled
according to Rieutord & Zahn (1995) is used to construct a closure model with plumes (CMP). We apply it
to the formalism of excitation of stellar p modes developed by Samadi & Goupil (2001). The new excitation
model leads to a frequency dependence, of the power supplied to solar p modes, which is in agreement with
GOLF observations. Despite an increase of the Reynolds stress contribution due to our improved description,
an additional source of excitation -identified as the entropy source term- is still necessary to reproduce the
maximum of excitation rate. Our modelling including the entropy contribution reproduces the maximum
but over-estimates, at low frequencies, the power and calls for further theoretical improvements.

1 Introduction

In the uppermost part of the solar convective zone, turbulent entropy fluctuations and eddy motions drive
acoustic oscillations. 3D numerical simulations of the stellar turbulent outer layers have been used to compute
the excitation rates of solar-like oscillation modes (Stein & Nordlund 2001). As an alternative approach,
semi-analytical modelling can provide an understanding of the physical processes involved in the excitation
of p modes: in that case it is indeed rather easy to isolate the different physical mechanisms at work in the
excitation process and to assess their effects. Among the different theoretical approaches, that of Samadi &
Goupil (2001) includes a detailed treatment of turbulent convection, which enables the investigation of different
assumptions about turbulent convection in the outer layers of stars (Samadi et al. 2005). In this approach, the
analytical expression for the acoustic power supplied into p modes involves fourth-order correlation functions of
the turbulent Reynolds stress and the entropy source term, which for sake of simplicity are expressed in terms
of second-order moments by means of a closure model.

We develop a new approach and build an improved closure model. It consists in considering the convection
zone as composed of two flows (the updrafts and downdrafts). Starting from the Gryanik & Hartmann (2002)
approach, we develop a generalized two-scale mass-flux model (GTFM) that takes the physical properties of
each flow into account. Then a theoretical description of the plumes developed by Rieutord & Zahn (1995)
(hereafter RZ95) is used to construct the closure model with plumes (CMP).

The paper is organized as follows: Sect. 2 introduces the quasi-normal approximation (QNA) as well as
mass-flux models. In Sect. 3, we extend the two-scale mass-flux model and we construct the CMP with the
help of the RZ95 plume model. In Sect. 4, the CMP is used to compute the Reynolds stress contribution to the
excitation of p modes and the results on excitation rates are discussed.
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2 Closure models for turbulent convective layers

The most commonly used closure model at the level of fourth-order moments is the QNA that is valid for
a Gaussian probability distribution function and was first introduced by Millionshchikov (1941). The QNA
assumption permits the fourth-order turbulent vertical velocity correlations to be decomposed in terms of a
product of second-order ones, that is one uses

〈w′4〉QNA = 3 〈w′2〉2 , (2.1)

where w′ is the turbulent vertical velocity.

This approximation (Eq. (2.1)) remains strictly valid for normally distributed fluctuating quantities with
zero mean. As shown by Kraichnan (1957) in the context of turbulent flows and Stein (1967) in the solar
context, the cumulant (which is the deviation from the QNA) can be large and therefore not negligible. Hence,
one has to go further than this first order assumption.

Turbulent plumes are created at the upper boundary of the convection zone and fall down through the
convection zone. This can be represented by two flows which introduce an additional contribution when aver-
aging the fluctuating quantities, since averages of fluctuating quantities over each individual flows differ from
averages over the total flow. This causes a non-zero skewness (asymmetry of the probability distribution func-
tion, see Eq. 2.3) for the moments of turbulent quantities when averages are computed globally over the whole
system. The mass-flux models (MFM) were developed in order to take this non-zero skewness into account, as
an alternative to the QNA. For vertical velocity fluctuations w′, one then writes:

< w′ > = a < w′ >u +(1 − a) < w′ >d , (2.2)

where a and 1− a are the mean fractional area occupied by the updrafts and downdrafts, respectively (Gryanik
& Hartmann 2002; Canuto & Dubovikov 1998). <>u,d denotes the horizontal average over up- and downflows,
respectively.

Such a decomposition is also proposed for higher-order moments under the assumption that 〈w′n〉 ≈ 〈w′〉n.
Hence we have (Gryanik & Hartmann 2002; Belkacem et al. 2006).

< w′4 >= (1 + S2

w) < w′2 >2 where Sw =
< w′3 >

< w′2 >3/2
=

1 − 2a
√

a(1 − a)
. (2.3)

The asymmetry between up and downflow in the horizontal plane is taken into account through the skewness
(Sw). However, such models underestimate the fourth-order moments by as much as 70% and can be worse
than the QNA. Therefore, they clearly miss some important physical effects present in convective flows.

Gryanik & Hartmann (2002), hereafter GH2002, propose an interpolation between the QNA and the limit
of large skewness provided by the MFM. Their aim has been to account for the fact that horizontal scales of
temperature and velocity fluctuations are different (hence their improvements lead to a “two-scale mass -flux
model”(TFM)) as well as to understand and measure the effects of the skewness.

< w′4 >= 3 (1 +
1

3
S2

w) < w′2 >2 . (2.4)

This new parametrization permits a much better description of the fourth-order moments for convection in the
atmosphere of the Earth (GH2002). However, it fails when using the analytical expression for the skewness
(Eq. (2.3) (see Kupka & Robinson 2006)). Indeed, we have shown in Fig. 1 (see also Belkacem et al. 2006) that
the interpolated expression given by GH2002 gives rises to a very good modelling of the fourth-order moment (in
the adiabatic part of the solar convection region, z > 0.5 Mm in Fig. 1) provided the skewness is taken directly
from the numerical simulation. Then, to obtain a semi-analytical closure model, a more realistic estimate for
the skewnesses of velocity and temperature fluctuations is required than that provided by Eq. (2.3).

3 The closure model with plumes (CMP)

In this section, we use expression 2.4 where Sw is computed from an exact decomposition of the third-order
moment. We use results from the 3D simulation to neglect some terms (see details in Belkacem et al. 2006) and
we model the remaining terms by means of a plume model.
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Fig. 1 Fourth-order moment (< w′4 >) versus

depth (z) normalized to the fourth-order moment

calculated directly from the simulation. The solid

line denotes the moment calculated using Eq. (2.4)

with Sw taken directly from the simulation; the

dashed line shows the result if Sw is instead taken

from Eq. (2.3); and the dotted line is the QNA

(Eq. (2.1)). Second-order moments are computed

using the numerical simulation.

3.1 Turbulent two-scale mass-flux model

Our main idea is to separate the effect of the skewness introduced by the presence of two flows from the effect
of the turbulence which occurs in each individual flow. By introducing zero-mean fluctuations onto each flow,
we perform the decomposition of the third-order moment (see Belkacem et al. 2006, for details) and one obtain
for the skewness

< w′3 >= a(1 − a)(1 − 2a) δw3 + a < w̃′3 >u + (1 − a) < w̃′3 >d +3a(1 − a)
[

< w̃′2 >u − < w̃′2 >d

]

δw .(3.1)

The first term is the expression derived by GH2002. It is a measure of the skewness introduced by the presence
of two flows. The second and third terms represent the asymmetry of the PDF within each flow induced
by turbulence and the fourth term measures the difference of the turbulent velocity dispersion. This exact
decomposition takes both the asymmetry due to the presence (a = 0.5) of two flows and turbulence into
account.

3.2 The plume model

Eq. (3.1) shows that the skewness depends on six quantities and we have shown in Belkacem et al. (2006) that
moments related to the upflow as well as the third-order moment of downflow turn out to be negligible in
the quasi-adiabatic region of the sun because plumes are more turbulent in the downflow than in the upflow.
The remaining dominant terms are modelled by the plume model developed by Rieutord & Zahn (1995) in the
quasi-adiabatic convective region.

4 Application to stellar p modes; Results and Conclusions

The theoretical model of stochastic excitation considered here is basically that of Samadi & Goupil (2001) (see
also Samadi et al., 2005). It takes two sources into account, which drive the resonant modes of the stellar cavity:
the first one is related to the Reynolds stress tensor and as such represents a mechanical source of excitation.
The second one is caused by the advection of the turbulent fluctuations of entropy by the turbulent motions
(the so-called “entropy source term”) and as such represents a thermal source of excitation. We use the CMP
which is more realistic than the usual QNA approximation to model the Reynolds stress contribution for which
fourth-order correlation products appear.

The present excitation model gives a theoretical slope of the power, at low and intermediate frequencies,
which is in agreement with the observed data (see Fig. 2). We also find that including the CMP causes a
global increase of the injected power. This brings the power computed with the Reynolds stress contribution
alone closer to (although, at intermediate frequency, still below) the observations (Fig. 2). Various sources
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Fig. 2 Rate P at which acoustic energy is injected

into the solar radial modes. Cross dots represent

P computed from Baudin et al. (2005) solar seis-

mic data from the GOLF instrument. The curves

represent theoretical values of P : the dashed line

corresponds to a calculation of P using the QNA

closure model and only the Reynolds stress as

an excitation source term, the dashed-dots line is

the same except using the CMP as closure, and

the solid line is P using the CMP with both the

Reynolds and entropy contribution.

of uncertainties are likely to exist to explain the discrepancies. Concerning the CMP itself, the main point is
the super-adiabatic region which needs further theoretical developments to obtain a closure model in this zone.
Some improvements in the modelling of entropy contribution are necessary, namely one has to apply the CMP
for this term and the passive scalar assumption for entropy fluctuations must be removed.

The CMP closure model, indeed, strongly depends on the structure of the upper convection zone, and this
emphasizes that the structure of this region is of great importance in the theoretical prediction of the power
supplied into the p modes. Comparisons of amplitudes with observational data make it possible (in the future) to
obtain physical constraints on the asymmetry of the convection zone flows as well as on the nature of turbulence
in solar-like stars.
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