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Abstract. The VLT Planet Finder SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch),
that will include extreme adaptative optics (AO) and high-contrast coronagraphy, is under development.
While observing exoplanets with one of the facilities of SPHERE –IRDIS (Infra-Red Dual-beam Imaging
and Spectroscopy) in stabilized pupil mode– the field of interest rotates in the focal plane with respect
to optical aberrations that arise from post-AO residuals and instrumental aberrations. We propose a
detection-estimation algorithm, based on a likelihood approach, where we use this rotation effect as the
main discriminating criterium between the planet and the speckles. We also propose an idea to extend the
algorithm in order to take into account the Double Band Imaging facility given by IRDIS. The performance
of the algorithm is evaluated by numerical simulations based on the code developped within the SPHERE
consortium.

1 Detection-Estimation algorithm

The proposed algorithm tries to discriminate the planet from the background by the detection of its motion.
This technique has already been proposed (Marois et al. 2006; Mugnier et al. 2007) but the present study does
not focus on the same issues: previous work tries to suppress and stabilize the background using differential
processing –but without making any estimation, whereas the solution presented herein tries to estimate the
intensity and the position of a planet –but assuming that the background is perfectly static.

1.1 Statistical model

In mathematical words, we use a simple data model: at time exposure k (k = 1...N), the vector xk which
consists in the M concatenated pixels of the camera, is expressed as

xk = d + αpk(r) + εk (1.1)

where d is a stationnary deterministic unknown vector which represents the instrumental response (coronagraph,
static speckles, ...), α is the unknown intensity of a possible planet, r its unknown position on the first image,
pk its known instrumental response on the image k, and εk a noise vector assumed Gaussian, independent from
an image to another and with εk ∼ N(0, σ2IM ), where σ is unknown.
The goal is to derive a detection algorithm (H0: α = 0 vs H1: α > 0) and give an estimation of α and r for the
detected planets.
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Fig. 1. Left: 0.′′32× 0.′′32 map of the PSF off-axis p (at the power of 0.2), from CAOS-SPHERE simulation (see text).

Right: Field rotation simulation: time integration (
∑N

k=1
pk(r)) for 8 different initial positions r (at the power of 0.2).

1.2 Pre-estimation of the planet profile

Feld rotation –a circular but not uniform rotation of the field– is a deterministic effect (Avila & Wirenstrand
2005), that only depends on the celestial coordinates of the star (declination δ and hour angle HA), the starting
time of observation t and the position O of the field rotation axis on the image. Then, we assume that the
instantaneous planet profile p remains the same during the observation, and that we can estimate it, for example
as the core of an Airy pattern, or the analytical expression of the response of the Lyot coronagraph (Ferrari
2007). And finally we get pk as a continuous time integration of p submitted to field rotation (see Fig.1).

1.3 Maximum Likelihood approach: parameters estimation and detection

First we define the vector θ = (d, α) and the matrix Mk = (I|pk) of size M × (M + 1)1, so that the model is
linear in θ:

xk = Mkθ + εk k = 1, .., N (or X = M(r)θ + ε concatenating the xk into a MN × 1 vector) (1.2)

Then the maximization of the likelihood L(θ, r, σ) = P ({xk}k; θ, r, σ) is easily computed with respect to θ, and
we can note that its argmaximum is a function of r and not σ:

θ̂r(r) =

(
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k(r)Mk(r)

)−1 N∑
k=1
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(1.3)
The model being linear with respect to θ, θ̂r(r) is unbiased and statistically efficient2 for the true initial position,
so that if r was known we could not find a better estimator of α within this model. In particular

var(α̂r(r)) =
Nσ2

N
∑

k ||pk(r)||2 − ||
∑

k pk(r)||2
. (1.4)

Then the detection is achieved thresholding α̂r(n) for all n = 1, ..,M . The threshold can be fixed in order to
obtain the required probability of false alarm, after having estimated σ2 through

σ̂2
unbiased ML =

N∑
k=1

||xk − d̂||2M ′

M ′(N − 1)− 1
(1.5)

where we only take into account the piece of the image where no planet is likely to contribute3. Then, on the ar-
eas where the threshold is reached, we could estimate r by r̂ML = argmaxrL(θ̂r(r), r), so that α̂ML = α̂r(r̂ML).
But by simplicity, we began by the simple estimation r̂ = argmaxrα̂r(r) followed by α̂ = α̂r(r̂). And finally we

1where I is the identity matrix and pk is the last column of Mk
2Efficient: its variance reaches the Rao-Cramer bound.
3The true ML estimator of σ2 requires r to be estimated, so we should estimate r before the detection is performed, which

would rise some other difficulties.
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can get an estimation of var(α̂) from the previous estimators.

The model proposed is easily extended to take into account N’ calibration images yk = d+ εk assuming that
the noise variance and the static background d are identical between the two sets of images. The calibration
images could be either some other star images or the rescaled simultaneous images of the field in the second
band, if the planet was assumed to have a deep enough absorption band.

2 Simulations of the VLT instrument SPHERE

The data are obtained using the Software Package SPHERE v2.1 (Boccaletti et al. 2007), developped within
the CAOS problem-solving environment (Carbillet et al. 2004) and assuming the standard IRDIS simulation
parameters (Langlois et al. 2007). We took 300 atmospheric realizations to model one long exposure and
considered H2 filter data obtained with the apodized Lyot coronagraph. We apply field rotation on the obtained
images choosing the stabilized pupil mode, and introduce the camera noises on our set of N=450 resulting images.
The main simulation parameters are reported in the table hereafter.

Main parameters

Star and exoplanet system
intensity ratio 1.6 10−6

separation angles 0.2, 0.5, 1 and 2 arcsec
star and planet types (Allard et al. 2001) M0 at 10 pc, planet at 400K
declination, init. hour angle 0 deg , -2 hr
Atmosphere+VLT
seeing (at 500 nm) 0.85 arcsec
wave-front outer-scale L0 25 m
jitter 3mas
SAXO system
guide star mV = 8
sensor type Shack-Hartmann (40×40)
Near-IR coronagraph
wavelength band and resolution λ = 1.59 µm and R = 30
coronagraph type apodized Lyot
mask and Lyot stop diameters 4λ/D and D
chromatic upstream and downstream errors 0 nm and 10 nm
offset pointing 0.5 mas
Aberrations
instr., AO calib., Fresnel prop. 34.5 nm, 7.4 nm, 4.7 nm
beam shift, defocus 8 nm, 4 nm
pupil shear, pupil rotation 0.002D, 0 deg
IRDIS imaging device
RON, flat-field noise 10 e− rms, 10−3 rms
sampling rate Shannon at 0.95 µm
mean planet signal on the detector 19 electrons/s
time exposure 16 s
total integration 2 hr
field rotation velocity (pupil stabilized mode) vstart: 0.004 deg/s ; vend: 0.009 deg/s
Global (VLT + SPHERE) transmission 0.09

3 Results

While we cannot see any hint about the position of the planets on the sum of the derotated images, the planets
located at 0.′′2, 0.′′5, 1′′ and 2′′ and 1.6 10−6 times less bright than the central star, appear well here (see Fig.
3, shown in a log view).

With the simple estimation r̂ = argmaxrα̂(r) on the thresholded map, the estimation of r is within one pixel
of the true position for the four planets. Then we get a first idea of the accuracy of the estimation of α by
estimating the number of electrons due to the source on a single exposure by N̂γ = α̂×

∑M
i=1 pk(i) (for any k)

with α̂ = α̂r(r̂). Then, N̂γ is within 10% of the true value for the four planets.
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Fig. 2. Left: Sum of the 450 exposures
∑450

k=1
xk (at the power of 0.2). Right: Sum of the exposures, after derotation

(the planets are superimposed).

Fig. 3. Left: Estimation α̂r(n) for all possible initial positions n (at the power of 0.2). Right: α̂r(n) thresholded (and

dilatated for clarity), and superimposed on the data in a log view.
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