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Abstract.
We present a 3-degree of freedom theory of Titan’s forced rotation, as a rigid body. Such a study is

possible thanks to the Cassini data of the gravitational potential of Titan. We use a semi-analytical model
based on the recent analytical works of Henrard & Schwanen (2004), on a numerical integration and on an
identification of the arguments as an integer combination of the fundamental ones. Titan’s orbital motion
is modelized with TASS theory (Vienne and Duriez, 1995). We find that the equilibrium obliquity is nearly
zero, and that the fundamental periods of the free librations around the equilibrium are respectively 2.1,
167 and 306 years. Moreover, we enlight the influence of a 703-years period present in Titan’s inclination,
on its obliquity.

1 Introduction

As most of the major natural satellites, Titan is locked in a 1 : 1 spin-orbit resonance. More precisely, its least
axis of inertia is always pointed to Saturn. Moreover, the node of Titan on its orbital plane precesses at the
same rate as its orbital ascending node. These two commensurabilities constitute an equilibrium state known
as Cassini state.

Thanks to Cassini-Huyghens mission, and especially to Cassini fly-bys, we know some coefficients of its
gravity field, more particularly J2 and C22 (Tortora et al. 2006), what allows a reliable study of its rotation.

Recently, analytical theories of the rotation of celestial bodies have been developed, by D’Hoedt & Lemâıtre
(2004) for Mercury, locked in a 3 : 2 spin-orbit resonance, and by Henrard & Schwanen (2004) for the general
case of the synchronous bodies, that was later developed for the particular cases of Io (2005a) and Europa
(2005b, 2005c) by Henrard. In this study, we start from the work of Henrard & Schwanen (2004) and compare
it to an original numerical study.

2 Analytical study

The analytical study starts from the following Hamiltonian:
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with the following action-angle canonical variables:
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p = l + g + h P = G
nC

r = −h R = G−H
nC = P (1 − cosK) = 2P sin2 K
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where n is Titan’s mean orbital motion, q = −l, and Q = G − L = G(1 − cosJ) = 2G sin2 J
2 . The coefficients

of the Hamiltonian are defined as follows:
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where J2! is Saturn’s J2, d the distance Titan-Saturn, d0 the mean value of d, n∗ the mean motion associated
to d0, and the angles can be seen on the figure above, reproduced from (Henrard 2005a).

Fig. 1. The angles (reproduced from Henrard 2005a).

x and y are the first two coordinates of the center of Saturn in the frame (%f1, %f2, %f3) bound to Titan. Then we
use the model of Henrard & Schwanen (2004) to obtain the equilibrium (K∗, P ∗) and the fundamental periods
of the 3 proper librations around it: Tu, Tv and Tw. At the strict Cassini state, σ = p−λ+π = 0, ρ = r+" = 0,
ξq = 0 and ηq = 0 (ie the wobble angle J is null), where λ and " are respectively Titan’s mean longitude and
ascending node in an inertial frame (bound to Saturn). Moreover, Titan’s orbit around Saturn is considered as
circular with a constant inclination and a constant precession of the nodes.

Unfortunately, the quantity C
MR2 remains unknown. C = 0.4MR2 corresponds to a spherical undifferentiated

body, its real value should in fact be lower. We use both C
MR2 = 0.31 and C

MR2 = 0.35. For J2 and C22, we use
the values given by (Tortora et al. 2006), ie J2 = 3.15 × 10−5 and C22 = 1.1235× 10−5.

Tab.1 gives the values we obtained using the analytical model.

3 Numerical study

We perform numerical computations starting from the Hamiltonian (2.1), but with complete ephemeris for
Titan, instead of assuming its orbit as circular. We use TASS1.6 theory. Our initial conditions are taken very
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Table 1. Equilibrium and fundamental periods of libration analytically obtained.
C

MR2 = 0.31 C
MR2 = 0.35

K∗ 1.1205× 10−2 rad 1.1205× 10−2 rad
R∗ 6.277 × 10−5 6.277× 10−5

P ∗ 1 1
Tu 2.0945 y 2.2258 y
Tv 167.366 y 188.9876 y
Tw 306.624 y 346.2365 y

near the equilibrium estimated in the analytical study, but not at the exact equilibrium. The reason is that we
want to identify the free solution so as to numerically determine the fundamental periods associated. Then, a
frequency analysis is being performed to identify the solutions.

(a) (b)

(c) (d)

Fig. 2. Numerical simulation of Titan’s obliquity over 9000 years, with C
MR2 = 0.31.

Fig. 2 and 3 give some solutions of the numerical integration with the two values of C
MR2 , while Tab.2 and

3 give examples of solutions for C
MR2 = 0.31. The importance of the period of 703 years in the solution of

ρ is striking. It is due to a forcing effect by the proper mode of TASS1.6 Φ6, present in Titan’s inclination.
Moreover, we can see the high values taken by the wobble J for C

MR2 = 0.35 (Fig.3c). We can infer that we are
in a quasi-resonant state that could force the free libration.

Tab. 4 gives a comparison between the numerical and the analytical results for C
MR2 = 0.31. We see a very

good agreement for the fundamental periods of libration. On the contrary, a significant difference exists on the
mean obliquity K∗. This might be due to a too simple analytical model.
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(a) (b)

(c) (d)

Fig. 3. Numerical simulation of Titan’s obliquity over 9000 years, with C
MR2 = 0.35.

Table 2. Quasiperiodic decomposition of ρ, for C
MR2 = 0.31. The series are in sine.

amplitude phase (◦) period (y) identification
1 0.18089837 175.64 167.49723 φv (free)
2 0.15667339 −170.90 703.52446 −Φ6 (forced)
3 0.11829380 −175.18 135.28724 φv − Φ6 (free)
4 0.09023900 −161.92 351.75789 2Φ6 (forced)
5 0.07735641 −166.02 113.46712 φv − 2Φ6 (free)
6 0.05226443 −152.60 234.50407 −3Φ6 (forced)
7 0.05058400 −156.89 97.70793 φv − 3Φ6 (free)
8 0.03311443 −147.66 85.79329 φv − 4Φ6 (free)
9 0.03060799 −143.30 175.88361 −4Φ6 (forced)

4 Conclusion

This work gives a first study of Titan’s rotation, where Titan is seen as a rigid body. We obtain a quasiperiodic
decomposition of the forced solution, that can be splitted from the free solution, in which Titan’s obliquity plays
an overwhelming role. Moreover, we find a good agreement between the free librations around the equilibrium,
analytically and numerically evaluated. However, we have a slight difference in the equilibrium obliquity. Finally,
we cannot exclude a resonance between the proper mode Φ6 and Titan’s wobble.

The next fly-bys of Cassini spacecraft should give us more information on Titan’s gravitational field, and so
we should be able to perform a more accurate study on its rotation, that could include direct perturbations on
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Table 3. Quasiperiodic decomposition of K, for C
MR2 = 0.31. The series are in cosine.

amplitude ×102 phase (◦) period (y) identification
1 1.25481164 8.68 × 10−10 −2.65 × 1013 constant
2 0.68465799 −170.92 703.51272 −Φ6 (forced)
3 0.17842225 175.02 167.49146 φv (free)
4 0.10246867 −161.88 351.76856 −2Φ6 (forced)
5 0.07264971 −15.67 219.80041 φv +Φ6 (free)

Table 4. Comparison between our analytical and numerical results, for C
MR2 = 0.31.

analytical numerical difference
K∗ (rad) 1.1204859× 10−2 1.25481164× 10−2 12%
Tu (y) 2.094508 2.09773 0.15%
Tv (y) 167.36642 167.49723 0.08%
Tw (y) 306.62399 306.33602 0.09%

the other Saturnian satellites. These perturbations are known to be small (see for instance Henrard 2005c) and
should be negligible compared to the uncertainties we have on Titan’s gravitational parameters. After that,
the next step is to consider Titan as a multilayer non-rigid body and to study the consequences of its internal
dissipation on the rotation.
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