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ANALYTICAL CONSIDERATIONS OF SPACE DEBRIS WITH HIGH AREA-TO-MASS
RATIOS LOCATED NEAR THE GEO REGION

S. Valk1 and A. Lemâıtre1

Abstract. This paper provides a hamiltonian formulation of the averaged equations of motion with
respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting
near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the
averaging process, formulated using canonical and non-singular elements for eccentricity and inclination.
The dynamical evolution of space debris released near the geostationary ring, with area-to-mass ratios
(A/m) as high as 40 m2/kg is analyzed within the framework of mid-term evolution (∼ 1 year) as well as
long-term evolution (several decades). We also analyze the coupling equations between the eccentricity and
the inclination, considering a doubly averaged analytical model.

1 Introduction

Optical surveys for space debris performed by the European 1m telescope on Tenerife (Canary islands) have
discovered a significant population of small-size objects with diameters as small as ten centimeters near the
geostationary ring (GEO). These uncatalogued space debris have mean orbital motions of about 1 rev/day and
sometimes present highly eccentric orbits with eccentricities as high as 0.55 (Schildknecht et al., 2005). These
objects are probably the result of unknown fragmentations occurred near the geostationary ring, but the identi-
fication of such past events is complicated. Initially, (Liou & Weaver, 2004) suggested that some of the resulting
fragments are characterized by high area-to-mass ratios compared to those of typical spacecraft and upper stages.
As a consequence, they proposed a simple explanation to the astonishing discovery of high eccentricity objects:
the solar radiation might induce such a particular dynamics on space debris with sufficiently high area-to-mass
ratio. Indeed, a satellite or space debris exposed to solar radiation pressure undergoes a force that arises from
the absorption or reflection of photons. In contrast to gravitational perturbations, the acceleration due to solar
radiation pressure depends linearly on the area-to-mass ratio. Under such assumptions, space debris may be
affected by significant large eccentricities as well as important inclinations. Recent numerical investigations
were performed to put this assumption to the test (Liou & Weaver, 2004), (Anselmo & Pardini, 2005). In this
framework, short-term as well as long-term evolutions of geosynchronous space debris were studied in detail.
(Liou & Weaver, 2004) also proposed the source of such high area-to-mass ratios, namely thermal blankets or
multi-layer insulation (MLI), which is made from Mylar r©, Kapton r© or Nomex r©.
The topic specifically addressed in this paper is the development of simplified and non-singular analytical models
describing the evolution of space debris related to high area-to-mass ratios. On a qualitative point of view, this
analytical approach is highly informative to underline the main properties of such objects.

2 Analytical investigations

2.1 Non-singular elements

As the counterpart of equinoctial elements, Poincaré’s variables are suitable for all eccentricities and inclinations
associated with an elliptical orbit. In particular, they remain consistent even for null eccentricities and incli-
nations. Because they are canonical, this set is especially useful for treating orbit problems with Hamiltonian
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c© Société Francaise d’Astronomie et d’Astrophysique (SF2A) 2007



2 SF2A 2007

dynamics. The Poincaré’s variables are:

x1 =
√

2P sin p, y1 =
√

2P cos p, x2 =
√

2Q sin q, y2 =
√

2Q cos q, (2.1)

where the modified Delaunay’s elements are defined by: P = L − G, p = −ω − Ω, Q = G − H , q = −Ω.
The variables (L, G, H) are the classical Delaunay’s elements given by: L = √

µ a,G =
√

µ a(1 − e2), H =√
µ a(1 − e2) cos i, ω denotes the argument of perigee, Ω the longitude of the ascending node, a is the semi-

major axis, e the eccentricity and i the inclination. Finally, µ is the gravitational constant of the Earth.

2.2 Expansion of the radiation pressure disturbing function

The potential related to direct radiation pressure can be written:

Hrp = Cr Pr
A

m

a2
!

r!

nmax∑

n=0

(
r

r!

)n

Pn(cosΨ), (2.2)

where Ψ is the geocentric angle between the Sun and the space debris. Pn is the Legendre polynomial of degree
n and (X!, Y!, Z!) are the rectangular coordinates of the unit vector pointing towards the Sun; Cr is the
non-dimensional reflectivity coefficient (fixed to 1 further on in this paper) which depends on the reflective
properties of the space debris surface; Pr = 4.56 · 10−6 N/m2 is the radiation pressure per unit of mass for an
object located at a distance of 1 AU ; a! is a constant parameter equal to the mean distance between the Sun
and the Earth, that is a! = 1 AU ; r is the geocentric position of the space debris and r! is the geocentric
position of the Sun.
Using an expansion in powers of the eccentricity and of the inclination, typically up to order 10, and after
convenient substitutions, the potential formulation of Eq. (2.2) may then be expressed in terms of entirely
non-singular and non-dimensional variables (X1, Y1, X2, Y2):

Hrp =
nmax∑

n=0

Rn =
nmax∑

n=0

1
L2n

Nn∑

j=0

An
j (X1, Y1, X2, Y2, X!, Y!, Z!)Bn

j (λ). (2.3)

In Eq. (2.3), Bn
j denote trigonometric functions with respect to the mean anomaly λ. An

j are polynomials in
the non-dimensional rectangular coordinates of the Sun as well as the so-called rectangular non-dimensional
Poincaré’s variables (X1, Y1, X2, Y2) of the space debris:

X1 =
√

2P

L
sin p, Y1 =

√
2P

L
cos p, X2 =

√
2Q

L
sin q, Y2 =

√
2Q

L
cos q. (2.4)

For similar developments and further details, we refer to (Valk S. et al., 2007a), where a direct method for the
expansion of the geopotential of the Earth and the expansion of the luni-solar perturbations in non-dimensional,
non-singular and rectangular variables is presented with its effective implementation in computer algebra.

2.3 Toy models

On a qualitative point of view, it would be interesting to underline the main properties of objects with high
A/m ratios using simplified equations. Such an approach is adopted in (Chao, 2006) where the coupling effects
between the solar radiation pressure effects and the luni-solar attractions is considered. In this framework,
the latter provides a detailed understanding of the long-term evolution of both eccentricity and inclination.
Regarding our approach, we will focus our efforts on the radiation pressure without taking into account the
coupling between the radiation and the luni-solar effects. Consequently, this analysis will then emphasize the
intrinsic effects related to radiation pressure. On the other hand, to avoid any singularity in eccentricity and
inclination, the following simplified equations will be expressed using the before-mentioned non-singular set of
variables.
As we are interested in the long-term dynamics, we average the disturbing function over the fast variable, namely
the mean longitude λ. As a first approach, we average the disturbing function to the first order by dropping the
fast periodic terms in the trigonometric functions. After isolating the dominant terms (first order approximation
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in eccentricity and in inclination O(e, sin i/2)), and after using the non-dimensional ecliptic spherical coordinates
(λ!,β!) of the Sun instead of the rectangular coordinates (X!, Z!, Z!), the averaged potential takes the form:

〈Hrp〉λ = −Z1

{
(C!Y1 − S!X1)

(
1 − 1

4 (X2
2 + Y 2

2 )
)

+ 1
4

[
(Y 2

2 − X2
2 ) (C!Y1 + S!X1)

]
− 2X2Y2(S!Y1 − C!X1)

}

−Z2

{
(C!Y1 + S!X1)

(
1 − 1

4 (X2
2 + Y 2

2 )
)

+ 1
4

[
(Y 2

2 − X2
2 ) (C!Y1 − S!X1)

]
+ 2X2Y2(S!Y1 + C!X1)

}

−Z3 {S! (Y1X2 − X1Y2)} + O(e2, sin2 i/2),

(2.5)

where Z = 3
2 a Cr Pr

A
m

(
a!
r!

)2
, C! = cosλ!(t), S! = sinλ!(t), Z1 = Z cos2 ε

2 , Z2 = Z sin2 ε
2 , Z3 = Z sin ε

and ε is the obliquity of the Earth on the ecliptic. Let us remark that further on, the relative motion of the
Sun around the Earth will be assumed to be circular with a constant angular motion of n! = 2π/[year].

Mid-term evolution of eccentricity and longitude of perigee: Considering the hamiltonian disturbing
function defined in Eq. (2.5), the equations of variation are known, in particular in the eccentricity related
variables (X1, Y1). These equations can be further reduced by neglecting the first and second order terms in
(X2, Y2). Consequently, the are integrated with respect to time to obtain a first order solution:

X1(t) = − Z
L n!

sinλ!(t) + β0,

Y1(t) =
Z cos ε
L n!

cosλ!(t) + α0,

(2.6)

where (α0,β0) are constants of integration determined from initial conditions. These equations describe an
ellipse with center coordinates (α0,β0). In addition to the choice of non-singular variables, this simplified
analytical model differs from the one developed by (Chao & Baker, 1983) by the presence of the term in sin2 ε/2.
Neglecting the terms in sin2 ε/2, the ellipse becomes a circle, the radius of which is R = (1/L n!)Z cos2 ε/2.
Eqs. (2.6) show that the so-called eccentricity vector (Y1,−X1) & (e cos(ω + Ω), e sin(ω + Ω)) moves along
this circle (counter clockwise) at a constant rate n! = 2π/[year]. As a consequence, the longitude of perigee '
librates (Fig. 1 [left]) or circulates (Fig. 1 [right]) about a fixed value which depends on the initial conditions in
eccentricity e0 and in longitude of perigee '0 as well as on the radius of the circle, that is a directly proportional
function of the ratio A/m.
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Fig. 1. Schematic mid-term evolution (yearly oscillations) of the eccentricity vector in the (Y1,−X1) #
(e cos(ω + Ω),e sin(ω + Ω) ) phase space. Depending on the initial conditions in eccentricity e0 and longitude of perigee

"0, the longitude of perigee librates [left] or circulates [right] for a fixed value of the area-to-mass ratio A/m.
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Long-term evolution of inclination and longitude of the ascending node: After substituting the
first order approximation of the eccentricity and longitude of perigee variation defined by Eqs. (2.6) into the
equations of variation of the inclination related variable (X2, Y2), one can define the doubly averaged equations
with respect to the mean longitude λ and the ecliptic longitude λ!, that is:

〈
Ẋ2

〉

λ!
=

Z
2 n! L2

[(Z1 − Z2) Y2 − Z3] =
1

2 n! L2

[
Z2 cos εY2 − ZZ3

]
,

〈
Ẏ2

〉

λ!
=

Z cos ε
2 n! L2

(Z1 + Z2) X2 = −Z2 cos ε
2 n! L2

X2,
(2.7)

where the relative motion of the Sun around the Earth is still assumed to be circular with a constant angular
motion of n! = 2π/[year]. This system of differential equations is no more and no less than a harmonic
oscillator expressed in the rectangular coordinates X2:

〈
Ẍ2

〉

λ!
= −ν2

Ω X2 with νΩ =
Z2 cos ε
2 n! L2

. (2.8)

Moreover, a general solution of our second simplified model in inclination can be written as follows:

Y2

−X2

Ω

ε

2 ε

i0 = 0, Ω = Ω0
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Fig. 2. Schematic long-term evolution of the inclination vector in (Y2,−X2) # (sin i cosΩ, sin i sinΩ) phase space [left].

Various regimes of the inclination vector are recognizable: Circulation (solid line) and Libration (dashed and doted line).

Period of precession 2π/νΩ of the inclination vector with respect to the A/m [right].

〈X2〉λ!
= −A0 sin(νΩt + θ0),

〈Y2〉λ!
= sin ε− A0 cos(νΩt + θ0) + O(ε2) (2.9)

where the amplitude A0 and the phase difference θ0 are determined from initial conditions. Eqs. (2.9) describe
a circle with fixed center coordinates (0, sin ε) = (0, ε + O(ε3)) and a radius R = A0. The so-called inclination
vector (Y2,−X2) & (sin i cosΩ, sin i sinΩ) moves along this circle (clockwise) at a constant rate νΩ. Similarly
to the case of the eccentricity vector presented in Eqs. (2.6), the longitude of the ascending node will librate
or circulate depending only on the initial conditions in inclination i0 and longitude of the ascending node Ω0.
However, the libration regime takes place at about 0 degrees. On the other hand, the amplitude A0 of the solu-
tion (2.9), that this the radius of the circle, is independent of the area-to-mass ratio as well as any multiplying
factor present in the direct solar radiation pressure formulation. Indeed, the amplitude only depends on the
initial conditions and on the obliquity ε of the Earth’s orbit.
For the purpose of verifying the analytical results, we performed numerical integrations which use a home-
made semi-analytical theory developed in non-singular variables (Valk S. et al., 2007a), (Valk S. et al., 2007b).
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(Fig. 3 [left]) shows the mid-term evolution of the eccentricity. The amplitude of the mid-term oscillations, with
a period of nearly one year, significantly grows with increasing area-to-mass ratio. Besides, (Fig. 3 [right]) shows
that an increase of the area-to-mass ratio has as consequence a faster orbit pole precession. Moreover, we also
see that the maximum amplitude of the inclination is independent of the A/m. These latter numerical results
are in good agreement with (Liou & Weaver, 2004) and (Chao, 2006) and corroborate the dynamic behavior
underlined by our simplified analytical models.
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Fig. 3. Mid-term variations (yearly oscillations) of the eccentricity [left] and long-term variations of the inclination [right]

as a function of various area-to-mass ratios (A/m = 5, 10, 20 m2/kg) for a fixed initial condition (a0 = 42164 km, e0 =

0, i0 = 0 rad,ω0 = Ω0 = λ0 = 0 rad). Time at epoch is 21 March 2000.

Coupling equations between eccentricity and inclination: The equations of variation corresponding
to the averaged potential defined in (Eq. 2.5) are not uncoupled in the set of variables (X1, Y1) and (X2, Y2),
respectively. Consequently, it can be shown that the mid-term variations on the inclination related variables
(X2, Y2) will induce additional long-term variations on the eccentricity vector by combination of mid-term
periods only. The solution of this additional coupling effect between eccentricity and inclination can be written:

X1(t) = − Z
L n!

sinλ!(t) + B0 sin(νΩt + φ0),

Y1(t) =
Z cos ε
L n!

cosλ!(t) + B0 cos(νΩt + φ0),
(2.10)

Eqs. (2.10) show that the eccentricity vector always moves (counter clockwise) along a circle, defined in Eq.
(2.6), the center of coordinates of which moves (clockwise) along a great circle of radius B0 with a proper period
of 2π/νΩ. The combination of mid-term and long-term variations is illustrated schematically in Fig. 4 [left].
Using our semi-analytical theory, Fig. 4 [right] shows the evolution, over 40 years, of the eccentricity vector of
a space debris, taking into account only direct solar radiation pressure. The pattern observed is, as expected,
basically produced by the superimposition of two variations, the first with a period of 1 year, associated with
the solution presented in Eq. (2.6), and the second with a period of many decades, that is the proper period
2π/νΩ of the longitude of the ascending node.

3 Conclusions

The mid-term and long-term evolution of the eccentricity and inclination vectors of geosynchronous space
debris with high A/m ratios subjected to direct solar radiation pressure is analyzed using simplified models
expressed in non-singular elements. The analytical investigations underline the main effects of the direct so-
lar radiation pressure. These last results are also in good agreements with the works of (Chao, 2006) and
(Anselmo & Pardini, 2005).
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Fig. 4. Long-term and mid-term variations of the eccentricity vector coupled with the inclination and node revolution.
Theoretical evolution in the (Y1,−X1) # (e cos(ω + Ω),e sin(ω + Ω) ) [left]. Numerical propagation over 40 years of a

space debris projected in the e cos(ω +Ω), e sin(ω +Ω) phase space [right]. Area-to-mass ratio and initial conditions are
A/m = 10 m2/kg and (a0 = 42164 km, e0 = 0.2, i0 = 0, ω0 = Ω0 = M0 = 0 rad), respectively.
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