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Abstract. We present a new non-parametric method to quantify morpgfesmf galaxies based on a particular family of
learning machines called support vector machines. Theadethat can be seen as a generalization of the classical CAS
classification but with an unlimited number of dimensiond aon-linear boundaries between decision regions, is fully
automated and thus particularly well adapted to large ctisgizal surveys. The source code is available for download
athttp://www.lesia.obspm. fr/~huertas/galsvm.html

To test the method, we use a seeing limited near-infradfgthdnd, 216um) sample observed with WIRCam at CFHT
at a median redshift &~ 0.8. The machine is trained with a simulated sample built frdatal visually classified sample
from the SDSS chosen in the high-redshift sample’s restdré band, 077um) and artificially redshifted to match the
observing conditions. We use a 12-dimensional volumeudinh 5 morphological parameters, and other caractesistic
of galaxies such as luminosity and redshift. A fraction @&f #imulated sample is used to test the machine and assess its
accuracy.

We show that a qualitative separation in two main morphalalgiypes (late type and early type) can be obtained
with an error lower than 20% up to the completeness limit efsample KAB ~ 22) which is more than 2 times better
that what would be obtained with a classicghClassification on the same sample and indeed comparabpate slata.

The method is optimized to solve a specific probleffiering an objective and automated estimate of errors thdtlena
a straightforward comparison with other surveys. Selgctive training sample in the high-redshift sample rest-&am
makes the results free from wavelength dependfiates and hence its interpretation in terms of evolutionezasi

1 Introduction

The process of galaxy formation and the way galaxies eva@waill one of the key unresolved problems in modern
astrophysics. Many of the physical details remain unaertaiparticular the process and history of mass assemblg. On
classical observational way to test the models of galaxgnédion is to classify galaxies according to morphological
criteria, i.e., the organization of its brightness as potgd on the sky’s plane and observed at a particular waviieng
defined in the nearby Universe (Hubble et al. 1936), and fovothis classification across time (Abraham et al. 1996).
However, a major obstacle is still thefiiitulty in quantifying morphology of high redshift objectstivia few simple,
reliable measurements. Indeed, with the increasing numbeosmological surveys available today, classical visual
classifications become useless and automated methods enaistdoyed. Globally there exist two main approaches: the
first one, known as parametric, consists in modeling theildigton of light with an analytic model and fit it to the real
galaxy. A commonly used parameter in this approach is thgebtd-disk (BD) light ratio that correlates with qualitative
Hubble type classifications, and can be obtained by fittingeadcomponent profile (e.g. Simard et al. 2002). The second
approach is called non-parametric and basically congistsgasuring a set of well-chosen parameters that correltite w
the Hubble type. The main advantage of this method is thatisthot assume a particular analytic model and can therefore
be used to classify regular as well as irregular galaxiegalAéim et al. 1994 first proposed this method by defining the
concentration and asymmetry (C and A) parameters. Theyethdimat plotting those values in a 2D plane, results in
a quite good separation between the three main morpholdgjmas (early type, late type and irregulars). Subsequent
authors modified then the original definitions to make C andofemobust to surface-brighntess selection, centerirmg®rr

or redshift dependence (Brinchmann et al. 1998; Conseliae 2000) and introduced new parameters. In particular a
third parameter the smoothness (S) was proposed by (Coastlal. 2003) and gave its name to the CAS morphological
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classification system. More recently Abraham et al. 2003laotd et al. 2004 proposed two new parameters: the Gini
codficient that correlates with concentration and the M20 momEath of those parameters brings &eatient amount

of information concerning the galaxy shape. There is no Wwayyever, with classical approaches to use more than 3
parameters simultaneously. Bershady et al. 2000 made atfiestpt to do a multi-parameter analysis on a nearby sample
using a 4 dimensional space including concentration anchamtry as well as luminosity and color information. They
found indeed correlations between those parameters antededix 2D planes resulting from the combinations of those
parameters. The classification was however done indepéndiereach plane without considering all the information
simultaneously. In the framework of the COSMOS consortieoi@le et al. 2005), Scarlata et al. 2006 have recently
made a step forward by proposing a multi-parameter clagdic scheme (ZEST) based on the positions of galaxies in a
three dimensional space resulting from a principal compbaealysis on a 5 dimensional space. The method uses almost
all the information contained in the 5 parameters, but thed fialibration is done in 3 dimensions.

In this paper, we propose a generalization of the non-paraatassification that uses an unlimited number of dimensi

and non-linear separators, enabling to use simultanealisthe information brought by the flierent morphological
parameters. The approach uses a particular class of lgamachines (called support vector machines) that finds the
optimal decision regions in a volume using a training setreHae build this training set from a local sample that is
transformed to reproduce the physical and instrumentalgaties of the science sample, allowing to use it even omgeei
limited observations. The algorithm defines, in an autoohatay, the optimal decision regions using multi-dimensiona
hyper-surfaces as boundaries. It allows therefore a $iffaigvard comparison betweenfidirent science samples. The
classification scheme that we propose is intended as a frarkdor future studies on large cosmological fields.

The paper proceeds as follows: generalities on pattermgreion and in particular on support vector machines (SVM)
are described in the next section. In Section 3, we desdnbgéeneral steps of the proposed method to classify high-
redshift objects. We show, in particular, how the trainiegis built to reproduce the real sample properties (3.1)veed
finally describe several tests performed to probe the acgwithe method (3.2).

We use the following cosmological parameters throughogitptiper:Hp = 70 km stMpc™t and Qu, Qa, Q) =
(0.3,0.7,0.0).

2 Generalities on pattern recognition

Suppose a set of observations of a given phenomenon, in \ehiclh observation consists of a vectpe R",i = 1,..,1

and of an associated "trutlyi. For instance, in a classical concentration and asymmesgi€ication planex; would be

a 2D vector whose components are the concentration andyhevestry, andy;, would be 0 if the galaxy is irregular, 1 if

it is disk dominated and 2 if it is bulge dominated. We then leglrning machine, a machine whose task is to learn the
mappingx; +— Y; defined by a set of possible mappings> f(x, @). A particular choice ofr generates what is called a
"trained machine”.

2.1 Support vector machines

Support vector machines are a particular family of learmmaghines, first introduced by Vapnik et al. 1995 as an alter-
native to neural networks and that have been successfulyoged to solve clustering problems, specially in biol@gic
applications. In order to simplify the description of theghimportant points concerning SVM we will focus on a 2 class
classification problemtxi, yi},i = 1,...,1y; € {-1,1},x; € R without loss of generalization. The basic idea is to find an
hyperplane that separates the positive from the negatamplbes. If this plane exists, the pointshat lie on the hyper-
plane satisfyw.x + b = 0, with w normal to the hyperplane, atfigl/||w|| the perpendicular distance from the hyperplane
to the origin. d, (d_) will then be the shortest distance from the separating ipfaee to the closest positive (negative)
example. The "margin” is defined to bd; + d_. The algorithm will then simply look for the separating hyplane with
largest margin. One key feature that can be added to solve coonplex problems is the use of non linear decision func-
tions. To do so, we map the data to some other (possibly iefitiihensional) Euclidian spat& @ : RY — H where the
data can be linearly separable by some hyperplane. Sinanthevay in which the data appear in the training problem
is in the form of dot products;.x; then the training algorithm would only depend on the dataufh dot products i,

i.e. on functions of the fornd(x;).®(x;). If there is a "kernel function” K such tha€(x;, x;) = ®(x;).@(x;) we would
never need to explicitly even know whatis. In summary, SVM are a particular family of learning manets that: (a)

for linearly separable data, simply look for the optimal aeging hyperplane between distributions by maximizirey th
margin, (b) for non separable data a "tolerance” parametauét be added which controls the tolerance to errors and (c)
for non linear non separable data a kernel function is buélt maps the space into a higher dimensional space where the
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data are linearly separable. Then the Kernel parametershawsljusted too.

2.2 Application to galaxies

Abraham et al. 1994 proposed the idea of measuring somectvetien parameters on a galaxy image that can be easily
correlated with its morphology. In their paper they introdd the concentration, which basically measures the fnacti

of light contained in an inner isophote, and the asymmethjcivmeasures the degree of symmetry of the galaxy. They
showed, that plotting those values in a 2D plane results uit@ good separation between the three main morphological
populations: early-type, late-type and irregulars. Thegsequently plotted linear separators to define the regiods
classified a set of galaxies with unknown morphology acewydo their positions in the so-calledAplane. In other
words, they tried to maximize the margins between 3 popiatin a 2 dimensional space using linear separators. The
same task can be done in a 3 dimensional space (CAS, Consketite2003) but it becomes simply impossible with
more than 3 dimensions. In this sense SV¥Eeoa straightforward generalization of this method siney ttan separate
samples with an unlimited number of dimensions and use im&ail boundaries.

3 The method

When observing objects at higher redshift with a grouncedaslescope the/S decreases, galaxies become poorly
resolved and consequently more symmetric and less comatetife.g. Conselice et al. 2000). The separation in fhe C
plane turns out to be less clear. That's why space data sutts@simaging are widely used for those purposes and
classifications based on colors are usually adopted forgktnased data (e.g. Zucca et al. 2006). It is known however
(e.g. Arnouts et al. 2007) that a classification based onlgadars is highly contaminated by the presence, for instance
of an important population of "blue” early-type galaxiegesially at high redshift where the red sequence is building
That is one of the reasons why classifications based on mtmgibal criteria are preferred. Indeed, with the incregsin
amount of data coming from ground-based surveys becomiaijable today it would be interesting to know if it is
possible to obtain at least a rough morphological classificgrom these observations. In the following sections we
therefore investigate wether the possibilities of usingrgé number of parameters and non-linear boundafteseal

by support vector machines can help to increase the accofdpure” morphological classifications on high-redshift
ground-based data.

3.1 General procedure

The proposed procedure can be summarized in 4 main stefui(d)a training set: for that purpose, we select a nearby
visually classified sample at a wavelength correspondinéaest-frame of the high redshift sample to be analyzed.
We then move the sample to the proper redshift and imagetguaald drop it in the high z background. (b) Measure a
set of morphological parameters on the sample. (c) Trairppat vector based learning machine with a fraction of the
simulated sample and use the other fraction to test anda&stienrors. (d) Classify real data with the trained machimk a
correct for possible systematic errors detected in thengestep.

3.2 Testing

In order to test the method, we work on a sample of galaxiesrebd with WIRCam at CFHT in the near infrared
Ks band. The field is part of the Canada-France Hawaii Telestegacy Survey (CFHTLS) Deep survey and its near
infrared follow-up and it is centered on the COSMOS areayflecet al. 2005). We use a cutout of 1010 to perform

all the tests. The sample is complete ugKi@B) = 22 and the median photometric redshifti®.8. Images are reduced
wit the Terapix pipelintand have a pixel scale of 16 with a mean FWHM of O07".

3.2.1 Building the training sample

We use a local catalog of 1472 objects from the Sloan DigitglSurvey in the i band, which roughly corresponds to the
rest-frame of the K-band at~ 1 and that has been visually classified (Tasca & White 2006).

httpy/terapix.iap.fr
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We first generate a random pair of (magnitude, redshift)ealuith a probability distribution that matches the real
magnitude and redshift distribution of the sample to be &ited. Then, for every galaxy stamp, we proceed in four steps
First, we remove all the foreground stars and all other ssiticat do not belong to the galaxy itself. Second, we degrade
the resolution to reach the one at high redshift: we measigr&WHM at high redshiftf,,), convert it to Kpc using a
standardA CDM cosmology and deduce the resolution the local galaxyt imaxe (fi;). Then the image is convolved with

a 2D gaussian function &fFWHM = 1/(fé - fiz), wheref; is the local galaxy’s initial resolution. Third, the image i

binned to reach the expected angular size at high redsliffttive 015 pixel scale. In this step, the image is also scaled
to its new magnitude. Finally, we drop the galaxy in a reakigagund image.

Once the simulated galaxies are dropped in a real backgraumdneasure 5 morphological parameters (C, A, S,
M20, Gini), 2 shape parameters (ellipticity and CLASSAR), 2 size parameters (isophotal area, petrosian radius
luminosity parameter (magnitude) and the photometrichifidss a distance parameter to build a 12-D space that we use
to train the SVM.

3.2.2 12-Dversus 2-D SVM

We trained then 2 machines: the first one, with only 2 pararaé@and A), which should globally give the same results
as a classical @ classification (Huertas-Company et al. 2007) and the sttome with 12 parameters described above.
We then tested both machines by looking at the fraction cdxdas that are correctly classified. Results for the whole
sample are summarized in table 1. We observe that includirg than two parameters in the classification results in a
significant gain for this sample wherg¢ACcannot do much better than a random choice. To establistothestness of this
effect we look at the accuracy of the classification as a fundf@main properties of the galaxies: luminosity, distance
and area (Fig. 1) by progressively adding objects and migsaach time : a) the global accuracy, i.e. the fraction of
galaxies that are classified correctly by the machine, arttidorccuracy per morphological type, i.e. the fraction of
predicted early (late) type galaxies that are visually sifaes] as early (late) type respectiveMg(,g andNs_s). We
observe that the 12-D machine results in a more robust andhsyric response in all the magnitude, redshift and size
bins.

SVM C/A
Early-Type Late-Type

SVM 12-D

Classical CA
Early-Type Late-Type

Early-Type Late-Type

Visual Early-Type
Visual Late-Type

0.59(96) 0.51(321) 0.57(304) 0.45(113) 0.75(365) 0.18 (52)
0.41(65) 0.49 (309) 0.43(236) 0.55(138) 0.25(149) 0.82 (225

Table 1. Comparison of the accuracy of three classifications of thR@adm sample: Classical/& SVM C/A and 12-D SVM. The
table shows for each method the relations between the viswhlthe predicted morphological classes. The number ottbhpre
enclosed in parentheses. (see text for details)

4 Conclusions

We have presented a new method to perform morphologicadifitzgion of cosmological samples based on support
vector machines. It can be seen as a generalization of tesicdh non-parametrical/& classification method but with

an unlimited number of dimensions and non linear bounddmid#een the decision regions. The method is specially
adapted to be used on large cosmological surveys sinceuitysasfutomated and errors are estimated objectively aligwi

an easy comparison between surveys witfiedént properties. As a test, we use our method to classifyaginfrared
seeing-limited sample observed with WIRCam at CFHT withaéning set of~ 1500 objects from the SDSS. We show
that increasing the number of parameters in the analysieescerrors by more than a factor 2; leading to a mean accuracy
of ~ 80% of correct classification up to the sample completerigss(Kag ~ 22). The presented method is intended
as a framework for future studies. The library is availalbledownload ahttp://www.lesia.obspm. fr/ huertas/
galsvm.html
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Fig. 1. Cumulative accuracy of classifications for a 2D maching @lefumn) and a 12D one (right column) as a function of magigtu
(a and b), area (c and d) and redshift (e and f). Solid line shibe global accuracy, i.e. the number of galaxies corrédétified,
dotted and dashed lines show respectively the fraction iy &gpe and late type galaxies classified correctly. Stampke right
column show a typical galaxy for every magnitude, area adghié range.
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