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CHARACTERIZING THE MRI-DRIVEN TURBULENT TRANSPORT IN
ASTROPHYSICAL DISKS.
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Abstract. Since 1990, the magneto-rotational instability (MRI) has been widely recognized as the most
promising process to provide a turbulent transport satisfying the observational constraints. Although nearly
all disk models make reference to this instability as the source of turbulence, some important aspects of
the MRI-driven turbulent state and related effective viscous and resistive transport efficiencies are not well-
known. I present recent results on this issue, based on local simulations of the MRI performed with a new
MHD spectral code. These results focus on the role of finite (microscopic) resistivity and viscosity on the
large-scale turbulent Reynolds and Maxwell stresses, and on the mean large scale electromotive force. This
work is expected to give better constraints on turbulent transport, in particular on turbulent resistivity and
its anisotropy, which are critically needed for future large scale disk/jets models and simulations.

1 Introduction

The origin of angular transport in accretion disks has always been a central problem in the disk community. The
first α model (Shakura & Sunyaev 1973) already assumed a strong level of turbulence, leading to an effective
viscosity orders of magnitude higher than molecular viscosity. However, the physical origin of this turbulence
in disks is still highly debated. Since unstratified keplerian flows are known to be linearly stable with respect
to small perturbations, the existence of an hypothetical nonlinear instability has often been proposed; such
an finite amplitude instability may trigger turbulence with finite amplitude perturbations. This question was
studied both experimentally (Richard & Zahn 1999) and numerically (Balbus et al 1996; Hawley et al 1999)
but recent results showed that the transport due to this instability would be far too low to account for the
observational contraints (Lesur & Longaretti 2005).

An MHD instability relevant to accretion disks was found by Balbus & Hawley (1991), the magnetorotational
instability (MRI). This instability has been extensively studied since then, mainly with local unstratified (Hawley
et al 1995) and stratified (Stone et al 1996) 3D simulations, and global (Hawley 2000) disk simulations. However,
the dissipation of turbulent fields in these simulations is not controlled : no physical term is introduced to take
care of viscosity and resistivity in a self-consistent way. One may wonder whether the numerical dissipation
introduced by these simulations had an impact on the statistical quantities they predic for disk models, such as
the effective transport coefficients.

This issue is adressed here, using a 3D spectral Fourier code, with a full control over viscosity, resistivity and
numerical dissipation. We first describe the physics and the numerical methods we used to study turbulence
in disks. Then, we present new results on the role of magnetic Prandtl number in various magnetic field
configuration, which may have strong implications for real accretion disk dynamics. Last, a brief discussion is
provided, exhibiting numerical artifact that may influence our results.

2 Methodology

2.1 Physics

All the local MRI simulations performed to date rely on the so called “shearing sheet” configuration (Goldreich
& Lynden-Bell 1965 ; Hawley & al 1995), consisting of a 3D periodic box including the mean keplerian shear
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and rotation. In this approximation, one can easily check that the mean magnetic field direction and strength
are time-independent. However, since the mean magnetic field at the local scale is not conserved in real disks,
one has to check that this particular behavior of the shearing box doesn’t bias the results, in particular in
terms of turbulence efficiency. In the following, we will consider essentially the non-zero mean vertical field case
(〈Bz〉 = Bo). Some zero mean field cases will also be discussed for comparison purposes.

For this work, we use a spectral code to solve numerically the MHD equation taking into account a finite
viscosity (ν) and resistivity (η). Assuming the cartesian coordinates x, y and z correspond respectively to the
φ, −r, z direction in polar coordinates, the MHD equations can be written in a shearing box as :

∂tu + u · ∇u = −1
ρ
∇P +

1
µ0ρ

(∇ × B) × B − 2Ω× u − 2ΩSyey + ν∆u (2.1)

∂tB = ∇ × (u × B) + η∆B, (2.2)
∇ · u = 0, (2.3)
∇ · B = 0. (2.4)

This system is written in the incompressible approximation since the MHD turbulence is assumed to be
mostly subsonic at the local scale. We also neglect vertical and/or radial stratification for simplicity.

These equations involve the local rotation rate Ω, the local shear rate S ≡ r∂rΩ, and the local density ρ,
assumed to be constant in time and space. Noting that the flow typical length is the height of the simulation
box H (this length can crudely be seen as the characteristic height of the global accretion disk), one can define
all the dimensionless numbers of the problem :

• The Reynolds number, Re ≡ SH2/ν, measuring the relative importance of nonlinear coupling through
the advection term, and viscous dissipation.

• A proxy to the plasma beta parameter, defined here as β = S2H2/V 2
A where V 2

A = B2
o/µoρ is the

Alfvén speed. The rationale of this definition follows from the vertical hydrostatic equilibrium constraint
cs ∼ ΩH , which is expected to hold in thin disks, so that our definition of β is indeed related to the
plasma parameter in an equivalent, vertically stratified disk. This parameter measures the relative weight
of the Lorentz force and the advection term.

• The rotation number (inverse Rossby number), defined as RΩ = 2Ω/S, which measures the relative
importance of the Coriolis force.

• The magnetic Reynolds number, Rm = SH2/η, which measures the relative importance of resistive
dissipation with respect to the ideal term in the induction equation.

We consider only Keplerian disks in this investigation, so that the rotation number is held fixed to its
Keplerian value RΩ = −4/3. This leaves us with three independent dimensionless numbers: β, Re, and Rm. In
the following, we will also use the magnetic Prandtl number Pm, which satisfies:

Pm × Re = Rm. (2.5)

Lastly, we define the turbulent transport coefficient α as:

α =
〈vxvy − BxBy/(µoρ)〉

S2H2
. (2.6)

Note that our definition differs slightly from the definition adopted by Hawley et al. (1995) (Eq. 10) due to our
S2H2 term, leading to a factor 9γ/4 between their definition and Eq. ??.

2.2 Numerics

The code used for these simulations is an MHD extension of the HD code used in Lesur & Longaretti (2005), and
extensively described there. This code is a full 3D spectral (Fourier) code, based on FFTW libraries, parallelized
using the MPI protocol. This kind of code has many advantages for the simulation of incompressible turbulence,
such as:
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Fig. 1. Transport coefficient (left) and linear growth rate (right) at β = 100

• The incompressibility and solenoid conditions are easily implemented at machine precision, using a pro-
jector function in Fourier space.

• The energy budget is much easier to control, leading to a precise quantification of the energy losses by
numerical dissipation.

• Spatial derivatives are very accurate down to the grid scale (equivalent to an infinite order finite difference
scheme down to the grid scale).

Comparing our spectral code with a ZEUS-type finite difference code (Stone & Norman 1992), similar results
are obtained with a finite difference resolution two to three times larger than the spectral resolution. However,
FFT calculations are more computationally expensive than finite differences, leading to a final computational
time equivalent for both kind of code with the same “effective” resolution.

All the simulations presented in this paper were performed with an xyz resolution of 128× 64× 64 with an
aspect ratio of 4 × 1 × 1. One may change the physical viscosity and resistivity as well as the magnetic field
intensity (β). The mean magnetic field (conserved in the simulations due to the adopted boundary conditions)
is either aligned in the z direction or set equal to zero (β → ∞). White noise initial perturbations with respect
to the laminar flow are introduced as initial conditions on all variables.

3 Numerical results

3.1 Non zero mean vertical field

All previously published simulations were performed without numerical control of the dissipation scales and
dissipation processes. However, such a control is required to ascertain convergence. In this section, the role
of the Reynolds and Prandtl numbers is examined. In particular, the Prandtl number allows us to change
the ratio of the viscous and resistive dissipation scales. Unfortunately, deviations from Pm = 1 are quite
demanding numerically, since one wants to resolve both the velocity and magnetic dissipations scales. We
present on Fig. ?? (left) the result of such simulations: we plot the mean transport coefficient (α) as a function
of the Prandtl number, for various Reynolds numbers (the Reynolds number quantifies the viscous dissipation
scale). Statistical averages are computed over 500 shear times, and start after the first 100 shear times to avoid
pollution by relaxation of the initial transient dynamics. From these plots, one finds a significant correlation
between the Prandtl number and the transport coefficient, leading to

α ∝ Pmδ for
{

0.12 < Pm < 8
200 < Re < 6400 , (3.1)

with δ in the range 0.25 — 0.5. Note that this results shows that the transport coefficient depends on Re and
Rm via Pm, at least in the Pm range concidered in this paper. This may be seen on Fig. ?? (left) as a small
vertical dispersion (variation of both Re and Rm at constant Pm) compared to the effect of a single Pm change.
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Fig. 2. Dissipation spectrum at Pm = 0.25 (left) and Pm = 4 (right) for β = 100

To explain this behaviour, we first try to compare it with the linear growth rate of the most unstable MRI
mode (Fig. ??-right), as linear results are often assumed to control the transport efficiency in astrophysics.
Comparing these two plots shows clearly that the Pm − α correlation is not related to the linear behaviour,
and is therefore a more complex non-linear phenomenon. To get a closer look at the turbulence dynamics, we
plot the dissipation spectrum (k2E(k)) on Fig. ??. These plots clearly show a maximum at a scale known as
the velocity or magnetic field dissipation scale. In particular, we can check that a large Pm correspond to a
small magnetic dissipation scale and a large velocity dissipation scale, leading to a possible phenomenology for
the Pm − α effect (Lesur & Longaretti 2007).

3.2 Zero mean magnetic field

Despite the fact that one often refers to the MRI in the zero net flux case, the MRI (in the sense of a linear
instability) doesn’t exist without a mean field. The turbulence observed in the zero net flux simulations is due
to a non-linear instability involving both a local dynamo effect and a transient MRI growth (see eg. Rincon et
al. 2007). However, results from zero-net flux simulation are often considered as the typical MRI turbulence
one can expect in a disk (King et al. 2007) since one doesn’t need any external field to trigger the instability.
In this subsection, we will briefly present some results with zero net flux simulations, using the same code and
box as in the previous ones. In particular, we will consider once again a finite viscosity and finite resistivity.

For comparison purposes with the non-zero flux case, we plot on Fig. ?? the temporal evolution of the
transport coefficient for three simulation at various Pm, for Re = 3200. We first note that both Pm = 0.25 and
Pm = 1 runs lead to a relaminarized flow. More extensive runs, using various kinds of codes and algorithms
always lead to flow relaminarization if Pm < 2 (Fromang et al. 2007). Note however that these tests always
assume a finite (and obviously small, compared to disks) Reynolds numbers. Therefore, these simulations do
not necessarily imply that zero magnetic flux MRI turbulence in disks requires Pm > 2. However, they show
the lack of convergence of previous ideal simulations (ν = 0, η = 0), for which turbulence was always obtained
with this kind of setup, leading to similar results as our Pm = 4 run (α ∼ 10−3).

4 Discussion

In the previous section, we exhibited a correlation between the transport efficiency and the magnetic Prandtl
number, leading to a higher transport coefficient for larger Prandtl numbers. In the zero magnetic flux case,
simulations with Pm < 4 even lead to a relaminarization of the flow, where α = 0. However, in spite of our
efforts to control numerical artifacts, some approximations may have an important impact on our results. For
one thing, the periodic boundary conditions do reinforce the 2D channel flow solution (Goodman & Xu 1994),
leading to an artificially large transport efficiency. The incompressibility approximation can have a similar effect,
since we neglect sound waves which can act as loss terms for the turbulent field. Lastly, since stratification is
neglected, the flow typical length scale is fixed by the cutoff imposed by the box largest length, which is quite
different from a classical stratification length. Therefore, one may expect different results when accounting for
vertical stratification and possibly when changing the aspect ratio as well.
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Fig. 3. Temporal evolution of the transport coefficient α for various Prandtl numbers

One should also note that since the shearing-box approximation imposes a constant mean magnetic field
in the simulation, dynamo effects can’t show up on this field. Therefore, the magnetic field topology in local
simulations is an external constraint; one may possibly expect a real disk to switch locally from non-zero and
zero mean field configurations (or vice-versa). This remark leads us to conclude that the efficiency of the
MRI-induced turbulence in real disks may be highly variable, as one can get α ∼ 5 × 10−3 in Pm > 2 zero
flux configurations up to α ∼ 0.6 for Pm = 4 non zero flux (at least, as these variations are limited by the
parameter space available in our simulations). Moreover, these values have a large error bar due to the numerical
artifacts discussed above, and also due to the very low Reynolds numbers that can be reached in our simulations
(Re ∼ 103 in simulation whereas Re > 1010 in disks). Therefore, even the most resolved simulations achievable
on present day computers cannot ascertain whether MRI is able to explain the observed transport in magnetised
disks α ∼ 10−2—1 (King et al 2006).

The simulations presented in this paper have been performed both at IDRIS (French national computational center) and at the
SCCI (Grenoble Observatory computational center). The authors acknowledge fruitful discussions on the issues discussed here with
Steve Balbus, Sébastien Fromang and John Papaloizou.
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