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Abstract. The projection factor is a key quantity for the interferometric Baade-Wesselink (hereafter
IBW) and surface-brightness (hereafter SB) methods of determining the distance of Cepheids. We aim to
determine consistent projection factors that include the dynamical structure of the Cepheids’ atmosphere.
Hydrodynamical models of δ Cep and " Car have been used to validate a spectroscopic method of determining
the projection factor. This method, based on the amplitude of the radial velocity curve, is applied to eight
stars observed with the HARPS spectrometer. The projection factor is divided into three sub-concepts :
(1) a geometrical effect, (2) the velocity gradient within the atmosphere, and (3) the relative motion of the
“optical” pulsating photosphere compared to the corresponding mass elements (hereafter fo−g). Both, (1)
and (3) are deduced from geometrical and hydrodynamical models, respectively, while (2) is derived directly
from observations. The Fe I 4896.439 Å line is found to be the best one to use in the context of IBW and
SB methods. A coherent and consistent period-projection factor relation (hereafter Pp relation) is derived
for this specific spectral line: p = [−0.064 ± 0.020] log P + [1.376 ± 0.023]. This procedure is then extended
to derive dynamic projection factors for any spectral line of any Cepheid. This Pp relation is an important
tool for removing bias in the calibration of the period-luminosity relation of Cepheids.

1 Introduction : the interferometric Baade-Wesselink Method

Long-baseline interferometers currently provide a new, quasi-geometric way to calibrate the Cepheids period-
luminosity relation. Indeed, it is now possible to determine the distance of galactic Cepheids up to 1kpc with the
interferometric Baade-Wesselink method, hereafter IBW method. Interferometric measurements lead to angular
diameter estimations over the whole pulsation period, while the stellar radius variations can be deduced from the
integration of the pulsation velocity. The latter is linked to the observational velocity deduced from spectral line
profiles by the projection factor p. In this method, angular and linear diameters have to correspond to the same
physical layer in the star to correctly estimate the distance (Nardetto et al. 2004). We propose a division of the
projection factor into sub-concepts in order to allow a direct constraint from HARPS spectroscopic observations
of eight stars : R Tra, S Cru, Y Sgr, β Dor, ζ Gem, RZ Vel, # Car, RS Pup, with periods ranging from 4.7 to
42.9 days. More detail can be found in Nardetto et al. 2007 (hereafter Paper I).

2 Decomposition of the projection factor

First of all, we have to provide a definition for the projection factor that should be applied in the IBW and SB
methods. We define the interferometric projection factor as

p =
∆V o

p

∆RVc
(2.1)

where ∆V o
p is the amplitude of the pulsation velocity curve associated to the photosphere (subscript p) of the

star. It corresponds exactly to the optical (subscript o) barycenter of the photosphere defined by τc = 2/3,

1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
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where τc is the optical depth in the continuum. ∆RVc is the amplitude of the radial velocity curve obtained
with the centroid method, i.e. the first moment of the spectral line. This is required for obtaining a projection
factor independent of the rotation of the star and the natural width of the spectral lines (see Fig. 8, Nardetto et
al. 2006a). We insist on this definition of the radial velocity since it is absolutely required to allow important
comparisons between the projection factors of Cepheids.

We now divide the projection factor:
p = po fo−g fgrad,

into different quantities where,
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Fig. 1. The projection factor decomposition (p = pofgradfo−g) in the case of the Fe I 4896.439 Å spectral line: ∆RVc (!),

∆V g
l (!), ∆V g

p (triangle down) and ∆V o
p (Box). The Reference value p = 1.33 is indicated. The proposed method of the fgrad

determination is to first derive ∆RVc as a function of the line depth for all spectral lines (lower part, black points). This relation

is defined as ∆RVc = a0D + b0. Then, when translating (D, ∆RVc) points into (D, po∆RVc), a new linear relation is found

(upper part of the figure, black points). This new relation is (1) coherent with the pulsation velocity gradient in the atmosphere

(open circles) and (2) its zero-point is consistent with the pulsation velocity corresponding to the gaseous layer of the photosphere:

∆V g
p (triangle down). The decomposition of the projection factor is thus self-consistent, and fgrad can be directly derived from

observations for any spectral line using the relation : fgrad = b0
a0D+b0

, where D is the line depth of the considered spectral line.

- po = ∆V g
l

∆RVc
is the geometrical projection factor. It corresponds to an integration of the pulsation velocity

field projected on the line of sight and weighted by the surface brightness of the star. To derive po, we consider
a linear law for the continuum-intensity distribution of the star defined by I(cos(θ)) = 1−uV +uV cos(θ), where
uV is the limb-darkening of the star in the V band. po is derived for all stars. In addition, we find that a
slight correction must be applied to allow a comparison between geometric and hydrodynamic modeling. The
hydrodynamical models of δ Cep and # Car are actually used to calibrate the Ppo relation.

- fo−g = ∆V o
p

∆V g
p

, where ∆V g
p is the gas (subscript g) velocity associated to the optical barycenter (τc = 2/3)

of the photosphere. Thus, fo−g is linked to the distinction between the optical and gas photospheric layers.
The optical layer is the location where the continuum and line photons are generated (e.g. the location of the
photosphere). The gas layer is the location of some mass element in the hydrodynamic model mesh where, at
some moment in time, the photosphere is located. Given that the location of the photosphere moves through
different mass elements as the star pulsates, the two “layers” have different velocities, hence the necessity of the
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Table 1. Hydrodynamical models of Cepheids.

Name P Teff
L

L"
M

M"
R

R"

[days] [K]
S Cru 4.7 5900 1900 5.6 42
δ Cep 5.4 5877 1995 4.8 43
Y Sgr 5.7 5850 2200 5.0 45
β Dor 9.9 5500 3500 5.5 65
ζ Gem 10.4 5500 3600 5.0 64
RZ Vel 21.6 5400 7450 7.0 109
# Car 34.4 5225 21000 11.5 180
RS Pup 42.9 5100 22700 9.7 186

fo−g definition. Indeed, the interferometer in the continuum is only sensitive to the optical layer. This quantity
is derived directly from the hydrodynamical models of Cepheids (see Table 1).

- fgrad = ∆V g
p

∆V g
l

, where ∆V g
l is the gas velocity associated to the optical barycenter (τl = 2/3) of the line-

forming (subscript l) region. Thus, fgrad is linked to the velocity gradient in the atmosphere of the star. This
quantity is derived directly from spectroscopic observations (see next Sect.).

The consistency of the projection factor decomposition is validated by the hydrodynamical models of δ Cep
and # Car. The case of δ Cep is presented on Fig. 1.

3 Is there a consistent way to derive fgrad directly from observations?

Let assume a linear relation between the line depth and the position of the line-forming region in the atmosphere
of the star. Then, considering different spectral lines spread all over the atmosphere, it should be possible to
determine the velocity gradient within the atmosphere. To test these ideas, we consider the spectral line depth
corresponding to the minimum extension of the star (D in the following, see paper I). Then, we derive ∆RVc

for 17 selected spectral lines, and find a very interesting observational linear correlation ∆RVc = a0D + b0 for
all stars of our sample (see Fig. 2 and Table 2). Following the projection factor decomposition, we can derive
fgrad by using the following relation : fgrad = b0

a0D+b0
. fgrad depends thus on the spectral line considered. And

it seems clear that a spectral line that forms close to the photosphere implies small differences (in velocity)
between the line-forming region and the photosphere. We thus finally find that the Fe I 4896 Å spectral line
(with D very small: 0.08 in average over all stars) is the best one to use in the context of the IBW and SB
methods.

By combining all quantities (po, fgrad and fo−g), we are able to derive a Pp relation for the first time. po

and fo−g are deduced from geometrical and hydrodynamical models, respectively, while fgrad is derived directly
from observations. A summary of the results is given in Table 2 and illustrated in Fig. 3.The resulting linear
law is:

p = [−0.064± 0.020] logP + [1.376 ± 0.023]. (3.1)

This relation holds only for the Fe I 4896.439 Å spectral line.

4 Discussion

The derived Pp relation will be useful in the context of the IBW and SB methods. For example, if we compare
Eq. 3.1 with the usual value widely used in the community p = 1.36 (Burki et al. 1982), we obtain a correction
for the projection factor depending on the period. It is then possible to translate it into a bias on distances and
absolute magnitudes. By this process, we obtain the relation:

∆MV = 0.10 logP − 0.03 (4.1)
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Fig. 2. ∆RVc as a function of the depth D of the spectral line considered. Uncertainties are indicated. Stars are presented with

increasing period. The δ Cep model is also indicated for comparison. Linear correlations are derived for all stars (see Table 2).

The fgrad quantity is derived from these relations.

where ∆MV is the correction to consider on the PL relation. We thus conclude that one can make an errors of
0.10 and 0.03 on the slope and zero-point of the PL relation, respectively, if p = 1.36 is used for all stars instead
of the Pp relation. This correction is, however, only indicative because it is indeed restricted to our definition
of the projection factor (Eq. 2.1) and to the Fe I 4896.439 Å spectral line.

It is now possible to refine the IBW and SB methods. First, we suggest using the RVc radial velocity to
avoid bias related to the rotation velocity of the star (even if Cepheids are supposed to be slow rotators) and
the width of the spectral line. One then has to determine the RVc curve and force the average to be zero in
order to avoid γ-velocity effects. Due to our careful definition of p, the projection factors proposed in this paper
are indeed independent of the γ-velocity. The spectral line considered must have a depth lower than 0.1 and
should be the same for all considered Cepheids. The low depth of the spectral line is required to diminish the
impact of the velocity gradient. If the Fe I 4896.439 Å is used, one can use Eq. 3.1 directly to determine the
dynamic projection factors of Cepheids. If not, we propose the following method. Given the line depth of the
spectral line considered for each Cepheid, it is possible to determine the fgrad from a0 and b0 (Table 2). If
the Cepheid being studied is not in our sample, Fig. 2 of Paper I can be used. Then po can be determined
using a geometrical model. However, the consistency (at a level lower than 0.025 on p) between interferometric
observations, geometrical, and hydrodynamical models should be studied in detail in the future. For fo−g, one
can use:

fo−g = [−0.023± 0.005] logP + [0.979 ± 0.005], (4.2)
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Table 2. Derived projections factors for all stars computed from the decomposition presented in Eq. 2.2.

Name HD P (b) a0 (c) b0 (c) po (d) fgrad (e) fo−g (f) p (g)

[days]
R TrA 135592 3.38925 2.50±4.55 28.48±0.90 1.396±0.010 0.995±0.009 0.967±0.005 1.34±0.03

S Cru 112044 4.68976 2.13±3.61 33.33±0.90 1.392±0.010 0.996±0.007 0.966±0.005 1.34±0.03

Y Sgr 168608 5.77338 5.76±3.53 34.01±0.12 1.387±0.010 0.991±0.005 0.962±0.005 1.32±0.02

β Dor 37350 9.84262 0.86±1.31 31.59±0.40 1.380±0.010 0.997±0.004 0.955±0.005 1.31±0.02

ζ Gem 52973 10.14960 1.09±0.89 25.35±0.31 1.380±0.010 0.994±0.005 0.953±0.005 1.31±0.02

RZ Vel 73502 20.40020 8.32±5.95 47.31±1.02 1.375±0.010 0.994±0.004 0.951±0.005 1.30±0.02

# Car 84810 35.55134 2.89±2.26 32.48±0.67 1.366±0.010 0.989±0.005 0.944±0.005 1.27±0.02

RS Pup 68860 41.51500 5.89±5.58 42.19±0.88 1.360±0.010 0.995±0.005 0.943±0.005 1.28±0.02

δ Cep (a) 213306 5.419 2.90 32.84 1.390±0.010 0.990±0.005 0.963±0.005 1.33±0.02

# Car (a) 84810 35.60 5.20 37.02 1.366±0.010 0.988±0.005 0.944±0.005 1.27±0.02

a δ Cep and # Car are hydrodynamical models

b The corresponding Julian dates (To) can be found in Nardetto et al. 2006a.

c Linear relations (Fig 2) between the amplitude of the velocity curves and the line depth (at minimum extension of the star),
∆RVc = a0D + b0 for all stars, together with the 1σ uncertainty.

d po is derived from the linear limb-darkening laws of Claret et al. (2000) based on the static models of Kurucz (1992). We then
apply a slight correction based on the δ Cep and # Car hydrodynamical models: p0[hydro]= p0[geo]−(0.0174 log P − 0.0022)
to take the dynamical structure of the Cepheid’s atmosphere into account.

e fgrad is derived directly from observations using Eq. fgrad = b0
a0D+b0

. It is important to notice that the results indicated

here correspond to the Fe I 4896.439 Å line. In the case of a modeled star, it is derived directly from the hydrodynamical
model.

f fo−g is derived directly from the hydrodynamical models.

g p-factors defined by p = pofgradfo−g. po and fo−g are derived from geometrical and hydrodynamical models respectively.

fgrad is derived from observations.
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Fig. 3. The projection factor (p = pofgradfo−g) as a function of the logarithm of the period. Black points and open circles

correspond to observations and models.

even if this relation has to be confirmed observationally in the future. Finally, the projection factor of Cepheids,
following our decomposition, is p = po fgrad fo−g. This procedure should be applied to avoid bias in the
calibration of the PL relation.

However, we know that the masking cross-correlation method is widely used to increase the signal-to-noise
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ratio on radial velocity measurements. In that case however, one cannot exclude the impact of the rotation,
the spectral lines’ width, and γ-velocities effects. Nevertheless, we can still provide a Pp relation that is more
appropriate considering an average line depth of D = 0.25. We find p = [−0.075 ± 0.031] logP + [1.366 ±
0.036]. Another important point is that we provide visible projection factors that should be used with visible
spectroscopic observations. If one used infrared spectroscopic observations to derive the pulsation velocity, one
should use specific infrared projection factors. Indeed, in the infrared, the limb darkening is supposed to be
lower and the corresponding po-factors higher (certainly about 4%). But, spectral lines also form higher in the
atmosphere (i.e. in the upper part of the atmosphere), which supposes a lower fgrad. More studies have to be
carried out to derive an infrared Pp relation.

The next step is now to provide a remarkable insight into the dynamical structure of Cepheids’ atmosphere
by investigating, based on models of new generation, the relation presented in Nardetto et al. (2006a) between
the pulsating period and the spectral lines asymmetry curves (hereafter PA relation). Important links should
be indeed found between the line asymmetry and fo−g. However, right now, no model is able to reproduce this
PA relation in a satisfactory way. For that purpose, it seems required to dramatically increase the refinement
of hydrodynamical models, including convective energy transport, adaptive mesh, and a careful description of
the radiative transfer. We also expect in a near future important spectro-interferometric observations with high
spectral resolution (see e.g. the VEGA project with R" 30000, Mourard et al. 2007 and Stee et al. 2007).
Then, it would be interesting with such strong observational constraints (spectral line asymmetry and high-
angular resolution) to test the consistency of the models. In particular, it seems conceivable to constrain the
parameters of the 1D or multi-D convection. In that context, such models of new generation will be crucial for
our understandings of physical processes involved in the dynamics of Cepheids’ atmosphere.

Another limiting aspect concerns the limb-darkening. Computation of limb-darkening profiles at different
wavelengths and pulsational phases is needed in the IBW method not only to derive the interferometric angular
diameters, but also to determine the geometric projection factor. However, theoretical results concerning limb-
darkening are currently inconsistent at an important level (see for example Marengo et al. 2003, Fig. 3, and
Nardetto et al. 2006b, Fig. 3). On the observation point of view, it should be possible in a near future
to constrain this physical quantity directly from interferometric observations in the continuum (see for e.g.
Aufdenberg et al. 2003). However, it is likely that new models including a refined description of the radiative
transfer (NLTE, spherical geometry) within the pulsating envelope will be certainly required to reproduce the
observational wavelength and phase-dependence of the limb-darkening.

5 Conclusion

This Pp relation is an important tool for removing bias in the calibration of the period-luminosity relation.
We emphasize that, if a constant projection factor is used to constrain the PL relation, an error of 0.10 and
0.03 magnitudes can be done, respectively, on the slope and zero-point of the PL relation. This can even be
much more if the wrong definition of the radial velocity is used. The intercept of this relation is confirmed by
recent HST observations, while the slope should be constrained in a near future by surface-brightness distances
of LMC Cepheids (Fouqué et al. 2007, submitted to A&A).
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