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NONLINEAR MIRROR MODE STRUCTURES

P.L. Sulem1 and T. Passot2

Abstract. We present a brief survey of recent direct numerical simulations and asymptotic or phe-
nomenological models, aimed to understand the formation and time evolution of pressure-balanced coherent
structures observed in the solar wind or in planetary magnetosheaths, and usually viewed as nonlinear mirror
modes. Special attention is paid to the conditions for the generation of magnetic holes or humps, and to the
dynamical role of kinetic and hydrodynamic effects.

1 Introduction

Magnetic structures in the form of pressure-balanced magnetic holes and humps with a size of a few ion Larmor
radii, anticorrelated with density fluctuations, are often observed both in the solar wind and in planetary
magnetosheaths close to the magnetopause, in regions characterized by anisotropic ion temperatures (T⊥ > T‖)
and a sufficiently high β (Kaufmann et al., 1970; Sperveslage et al., 2000; Winterhalter et al., 1994). Such
conditions can in particular be met under the effect of the plasma compression in front of the magnetopause
(Hellinger & Travnicek, 2005). These structures are quasi-static in the plasma reference frame and display a
cigar-like shape, elongated in a direction making a small angle with the ambient field (Horbury et al. , 2004, and
references therein). By permitting a distinction between spatial and temporal variations, the multispacecraft
observations of the Cluster mission have provided an unambiguous detection of these structures that are usually
viewed as resulting from the nonlinear saturation of the mirror instability, although alternative theories, in
terms of slow mode solitons have also been presented (Stasiewicz, 2004b). It was in particular suggested that
the mirror instability could play the role of a trigger generating high amplitude fluctuations that evolve such as
to become typical solitary structures of isotropic plasmas (Baumgärtel et al., 2005). Nevertheless, in contrast
with the linear mirror instability that has been extensively studied using particle in cell (PIC) simulations (Gary,
1992; McKean et al., 1992, 1994), phenomenology (McKean et al., 1993; Southwood & Kivelson, 1993) and, near
threshold, the kinetic theory in the low-frequency limit (Vedenov & Sagdeev, 1959; Hall, 1979; Pokhotelov et al.,
2002, 2004; Hellinger, 2007), the nonlinear saturation of this instability is still poorly understood, and the origin
of the observed structures remains partly unsettled. Magnetic holes are in particular observed in regions where
the plasma is linearly stable. Furthermore, in realistic situations, the mirror instability can be competing with
the ion cyclotron anisotropic (ICA) instability, especially at relatively low β and directions making a moderate
angle with the ambient field, although the presence of helium He++ can enhance the relative importance of the
former effect (Gary, 1992; McKean et al., 1992, 1994).

In this paper, we briefly review recent results based on numerical simulations (PIC and Eulerian integrations
of the Vlasov-Maxwell equations) and on asymptotic or phenomenological models (Passot et al., 2006; Passot &
Sulem, 2008; Califano et al., 2007; Borgogno et al., 2007), with the aim to provide a qualitative interpretation
of observational data usually viewed as nonlinear mirror modes.

2 Pressure-balanced magnetic structures

Inspection of mirror-like structures recorded by spacecraft missions early suggested that magnetic humps are
preferentially present in regions of relatively low magnetic field, while magnetic holes are rather observed in
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regions of high field (Lucek et al., 1999). More precisely, the presence of the former or latter structures is
strongly correlated with larger or smaller value of the parameter β (Joy et al., 2006). It in particular turns out
that the presence of magnetic humps does not require the exceptionally large values of β suggested by previous
observations (Erdös & Balogh, 1996). A more quantitative picture is obtained when characterizing the nature
of the magnetic structures by the skewness of the magnetic fluctuations that appears to be directly related to
the distance to threshold (Génot et al., 2006). Negative skewness (magnetic holes) is observed below or slightly
above threshold, while positive skewness (magnetic humps) are measured in more unstable regimes (see also
Soucek et al. (2007)). The phenomenon of bistability (associated with the existence of non trivial solutions in
the linearly stable regime), together with the preference of magnetic humps at larger values of β and/or for
larger distance from threshold is consistent with a nonlinear stability analysis based on an energy minimization
argument, performed in the framework of ordinary anisotropic MHD with a specific equation of state derived
from the stationary fluid hierarchy by assuming a bi-Maxwellian distribution function (Passot et al., 2006). It is
noticeable that in contrast with bi-adiabatic equations of state or their generalizations (Hau &Sonnerup, 1993),
the present closure where the parallel ion temperature is uniform and the perpendicular one a homographic
function of the magnetic fluctuation (Passot & Sulem, 2006; Chust & Belmont, 2006), correctly reproduces the
mirror instability threshold, an indication that such a fluid model retains essential ingredients associated with
the mirror bifurcation. Nevertheless, lacking kinetic effects, this model is not suitable to accurately reproduce
the time evolution of linear mirror modes. It could however be relevant to describe the very large magnetic
holes (hundreds to thousands of ion Larmor radii) observed in the solar wind (Stevens & Kasper, 2007).

3 Nonlinear evolution

The first proposed description for the linear saturation of the mirror instability is based on the quasi-linear theory
(Shapiro and Shevchenko, 1964) that assumes space homogeneity and a large number of excited modes. It is
characterized by a diffusion process in velocity space, leading to a flattening of the space-integrated distribution
function. This description is supported by the early time evolution of numerical simulations of the Vlasov-
Maxwell equations initialized with a bi-Maxwellian distribution function and performed along the direction of
maximum linear instability growth, in an extended periodic domain slightly above threshold (the growth rate is
of order 10−3 in ion gyrofrequency units) (Califano et al., 2007). Nevertheless, after a while, coherent structures
form, making the quasi-linear theory no longer valid. One in particular notices that the instantaneous growth
rate (that significantly differs from that associated with a bi-Maxwellian distribution function) becomes negative
while the amplitude of the structures (together with the skewness) continues to grow during thousands of ion
gyroperiods under the effects of nonlinearities. Big magnetic humps are formed whose long-time evolution is
characterized by a coarsening process that progressively reduces their number, leading eventually to a few large-
amplitude peaks whose evolution becomes extremely slow. Note that a simpler dynamics develops in a small
computational domain where geometrical constraints prevent the quasi-linear regime to develop, resulting in an
early formation of coherent structures with a distribution function that does not appear significantly perturbed
and in particular does not display evidence of particle trapping. The question however arises whether the same
conclusions hold far from onset ( Pantellini et al., 1995) or in deep magnetic holes.

In order to address the dynamics of nonlinear mirror modes, an asymptotic model based on a reductive
perturbative expansion was developed near threshold, a regime where all the unstable modes are located at
large scale (Kuznetsov et al., 2007). In this limit, kinetic effects are expected to act only at the linear level,
which permits a simplified approach where the nonlinear contributions are estimated from the drift kinetic
equation. A systematic perturbative analysis from the Vlasov-Maxwell system justifies this approach (Califano
et al., 2007). This asymptotics leads to a pseudo-differential equation of gradient type for the parallel magnetic
fluctuations, where, as announced, Landau damping and finite Larmor radius (FLR) effects arise at the linear
level only, the nonlinearity originating from hydrodynamic effects. The Landau damping drives the system,
while the FLR effects quench the instability at small scales. It turns out that the only asymptotically relevant
nonlinearities tend to reinforce the linear instability, leading to a finite time singularity that can be viewed
as the signature of a sub-critical bifurcation, not amenable to a perturbative calculation. To cope with this
situation, a phenomenological model was constructed by supplementing the asymptotic equation with nonlinear
FLR effects associated with the local variation of the ion Larmor radius in the coherent structures (Kuznetsov
et al., 2007; Califano et al., 2007). In regions of weaker magnetic field, the Larmor radius is larger, leading
to a more efficient stabilizing effect than within the linear theory. As a consequence, the mirror instability
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Fig. 1. Variation of the magnetic field skewness with σα predicted by the model equation (3.1), where α combines the

distance to threshold with the value of β, and σ = ±1 characterizes the positive or negative distance to threshold. The

insets display typical quasi-stationary solution profiles.

is more easily quenched in magnetic minima than in magnetic maxima, making magnetic humps more likely
to form during the saturation phase of the mirror instability. In contrast with the previous phenomenological
descriptions based on the cooling of a population of trapped particles (Kivelson & Southwood, 1996; Pantellini,
1998) that mostly predict deep magnetic holes (except for very large β) and do not refer to the bistability
phenomenon, the present model successfully reproduces spacecraft observations and numerical simulations. It
indeed predicts the formation of magnetic humps above threshold and also the existence of subcritical magnetic
holes (when the system is initialized by large-amplitude perturbations). In dimensionless units (depending on
the distance to threshold), this phenomenological model is governed by the equation

∂τU = K̂ξ

[
σU − 3U2 +

1
1 + αU

∂ξξU − 4ν

9(1 + αU)2
∂ξξξξU.

]
, (3.1)

Here ξ is the spatial coordinate in a direction quasi-transverse to the ambient field, and K̂ξ = −H∂ξ (where H
denotes the Hilbert transform) reduces in Fourier space to the multiplication by the wavenumber modulus |k|.
The function U is related to the longitudinal magnetic perturbation bz by bz/B0 = αU (here, B0 refers to the
magnitude of the ambient field). The parameter

α =
2β⊥

1 + β⊥

[
β⊥

(β⊥
β‖

− 1
)
− 1

]
(3.2)

scales like the distance β⊥(β⊥/β‖ − 1)− 1 to threshold at moderate β⊥, while it varies proportionally to β⊥)
when the latter is small. Furthermore, σ = ±1, depending on the positive or negative distance to threshold.
The coefficient ν fixes the domain size (the value 10−2 was typically used in the simulations). An interesting
quantity also used to analyze satellite data is the skewness of the magnetic perturbations, that is independent
of the performed rescalings. This quantity is plotted versus σα in Fig. 1. Above threshold (σ = 1), Eq. (3.1)
is initialized with a small random noise, while in the subcritical regime (σ = −1) a much larger random initial
perturbation is needed. The resulting graph is qualitatively very similar to that designed from Cluster data
(Génot et al., 2006). The inserted graphs refer to the corresponding typical profiles of quasi-stationary solutions.
The existence of stable subcritical magnetic holes is confirmed by direct numerical simulations of the Vlasov-
Maxwell equations, where an initial large amplitude magnetic depression survives after a rapid adjustment.
Such magnetic holes are also observed to persist in direct simulations above threshold (then developing a strong
overshoot) (Califano et al., 2007).

It is interesting to note that magnetic holes can also be generated in a possibly more natural manner in
an extended domain, at moderate β, in a regime far enough from the linear instability threshold. Numerical
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simulations performed in this regime show that the system does not relax to a quasi-steady state and that
the early formed magnetic humps gradually transform into magnetic holes, an effect that can be related to a
decrease of the β of the plasma that takes place as time elapses. No similar evolution is obtained in a small
computational domain where no qualitative change is produced by similar increase of the distance to threshold.

4 Are mirror modes amenable to a fluid description?

Reproducing the linear mirror instability requires an approach retaining both Landau damping and (linear)
FLR effects. It is possible to construct such a “FLR Landau fluid” (Sulem & Passot, 2008; Passot & Sulem,
2007) that generalizes the anisotropic Hall MHD by retaining these effects. It mostly consists in extending MHD
Landau fluid models (Snyder et al. , 2997), by including transverse scales comparable to the ion Larmor radius,
within a gyrokinetic scaling, suitable for quasi-transverse dynamics (Howes et al., 2006). The FLR Landau fluid
is essentially obtained by closing the fluid hierarchy at the level of the fourth rank moment (in order to retain
the nonlinear dynamics of the heat fluxes), in a way consistent with the low-frequency linear kinetic theory. It
improves a simpler closure made at the level of the pressure tensor (Passot & Sulem, 2006). The FLR Landau
fluid retains all the hydrodynamic nonlinearities together with a linear (or possibly semi-linear) description of
the low-frequency kinetic effects. It thus contains all the ingredients entering the asymptotic equation derived by
the reductive perturbative expansion, with nevertheless the property that the fluid model involves rich enough
nonlinearities to arrest the singularity. In the linearly unstable regime, the system thus evolves towards the
formation of sharp magnetic holes and also to transient humps at larger values of β (Passot & Sulem, 2008).
During the saturation phase, mean ion parallel and perpendicular temperatures evolve in a way that reduces
the distance to threshold. The structures that survive after their number has been reduced by coarsening effect,
are not perfectly stationary, and their amplitude decreases on a very long time scale. The model that does not
incorporate the variation of the ion Larmor radius, is unable to reproduce the formation of mirror humps at
moderate β.

Since the structures tend to slowly relax to the uniform state, it is of interest to enforce the stationarity
by maintaining constant the mean ion parallel and perpendicular pressures. This can be viewed as a simple
way of imposing a forcing that in more realistic situations is obtained through boundary conditions, such as for
example an inflow. The fluid model then correctly captures the phenomenon of bistability, associated with the
existence of magnetic holes below threshold. In this case, it is interesting to note that it also reproduces the
numerical observation that the magnetic component perpendicular to the plane defined by the ambient field
and the direction of propagation is symmetric with respect to the center of the magnetic hole. This contrasts
with the soliton models based on anisotropic Hall MHD with no Landau damping nor (linear) FLR (Stasiewicz,
2004a,b; Mjølhus, 2006). It is also interesting to notice that while in a small domain the system evolves towards
a stationary regime, in an extended domain and for a regime far enough from threshold, a spatio-temporal
chaotic dynamics develops where holes form and disappear in an unpredictable way (Borgogno et al., 2007).

5 Conclusion

A main conclusion of this study is that the saturation of the mirror instability preferentially leads to the forma-
tion of magnetic humps, although large amplitude magnetic holes are also stable solutions of the Vlasov-Maxwell
equations, both below and above threshold, indicating the existence of bistable regimes. These observations are
consistent with previous PIC simulations performed at lower resolutions (Baumgärtel et al., 2003). There is
however no evidence that large-amplitude magnetic holes can be reached under the effect of the linear mirror in-
stability. Furthermore, simulations in extended domains near threshold do indicate the development of an early
quasi-linear regime that is arrested by the formation of coherent structures under the effect of hydrodynamic
nonlinearities. It is unclear whether there exist conditions such that the system can stabilized in a quasi-linear
regime before hydrodynamic nonlinearities become relevant. The influence of hydrodynamic nonlinearities was
captured using a reductive perturbative expansion of the Vlasov-Maxwell equations. It turns out that these
effects actually strenghten the linear instability leading to a finite-time singularity. This early breakdown of
the asymptotics enables nonlinear kinetic effects to rapidly become relevant. As a consequence, their effect
does not reduce to a smoothing of the singularity but actually drastically modifies the nature of the nonlinear
structures. Nevertheless, a simple phenomenological correction of the asymptotic equation retaining the varia-
tion of the local ion Larmor radius associated with the structures turns out to be sufficient to reproduce main
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qualitative aspects of numerical and observational data. The question then arises whether there exists a regime
of parameters for which a signature of the singularity predicted by the asymptotic equation could be visible.

The FLR Landau fluid model is able to accurately capture not only the linear dynamics of the mirror
instability but also the finite amplitude solutions in the form of magnetic holes commonly observed in Vlasov
simulations and in satellite data. This approach is relevant when the nonlinearities originate mainly from the
hydrodynamic effects, and thus, further developments would consist in retaining, possibly in a phenomenological
manner, the effects of nonlinear kinetic effects such as particle trapping and, possibly more important, nonlinear
FLR effects. The latter effects are captured by the so-called gyrofluids (Brizard, 1992; Dorland & Hamett, 1993;
Beer et al., 1996; Brizard & Hahm, 2007) obtained by closing the moment hierarchy derived from the gyrokinetic
equation (Howes et al., 2006), but such a formalism has however not yet been developed in a regime where the
equilibrium state is anisotropic, as needed for the mirror instability to occur.

Another interesting issue concerns the observation in the solar wind of magnetic holes bounded by disconti-
nuities (Tsurutani et al., 2003) or extending up to thousands ion Larmor radii (instead on a few units) (Stevens
& Kasper, 2007), whose origin is hardly understood, although they display important properties of nonlinear
mirror modes. Finally, the question arises of the role played by mirror mode structures on the magnetopause
boundary, and in particular whether they can trigger micro-reconnection events.
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