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Abstract. When forming a sodium laser guide star (LGS), the lightened volume in this layer can be seen
as a cylindrical source ∼1m in diameter and ∼10 km in length. Because of the parallax, the LGS looks
significantly elongated when observed from the edge of the pupil of an Extremely Large Telescope. This
effect prompts the lasers to be launched from behind the secondary instead of from around the telescope,
but still degrades significantly the accuracy of wavefront sensing for adaptive optics. Further, the measure-
ment uncertainties are no more uniform across the pupil and correlations are introduced. From numerical
simulations, we analyze the benefit of taking into account these structured correlations and the effect of
priors in wavefront reconstruction algorithms. We found that priors are effective for a single LGS launched
behind the secondary. When combining the measurements from several LGSs in a Ground Layer adaptive
optics system, we found that taking into account the noise covariances and launching from the edge yields
the best reconstruction. Further, in this configuration, we can discard the worse measurements along the
elongated direction and reduce the field of view (thus use a smaller detector) without any significant loss of
accuracy.

1 Introduction

Extremely Large Telescopes (ELT) all rely on adaptive optics systems using several laser guide stars (LGS). But
since the atmospheric sodium atoms are concentrated at ∼90 km in altitude, in a ∼ 10km thick layer (Papen
et al. 1996), a LGS is seen as a significantly elongated spot from the edge of an ELT (Fig. 1).

The elongation of the spots at the focus of the subapertures of a Shack-Hartmann wavefront sensor sig-
nificantly reduces the accuracy on the measurement of the centroid displacements. Furthermore, much larger
detectors are necessary to image the enlarged spots. New centroiding algorithms like the matched filter (Gilles
& Ellerbroek 2006) have been devised to cope with the increase of reading noise, but the magnitude of photon
noise – proportional to the size of the spots (Rousset 1999) – is much higher.

Our aim is here to assess the effect of the spot elongation on the reconstructed wavefront. Since the elonga-
tions vary in amplitude and orientation (Fig. 1), the noise is no more uniform across the pupil and correlations
appear between x and y coordinates of the measured gradients of the wavefront. We show that introducing
Kolmogorov (or von Kármán) priors and taking into account the actual noise correlations dramatically improve
the quality of the reconstruction, compared to ignoring them. From numerical simulations, we compare the
wavefront reconstruction capability of different methods and show that unexpected better results can be ob-
tained when the LGSs are launched from the edge of the telescope pupil, although all the current ELT projects
expect to minimize the problem by launching the LGS from the center, behind the secondary. Furthermore, we
show that truncating the spots with smaller detectors does not degrade significantly the results.

2 Reconstruction methods and assumptions

In the following, we will compare four reconstruction methods, introducing priors or not, and taking into account
actual noise correlations or not. All of them start with the same model of data:

d = S · w + n, (2.1)
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Fig. 1. Layout of the elongated spots for centered LGSs (left) and for three LGSs launched at 120◦ from the edge of

the pupil (right). The diameter of the pupil is 42m with 30% central obstruction. In the two cases, h0 = 90 km, the

FWHM of the Sodium layer is 10 km, and the minimal FWHM of the spots is 1.2′′ (spot size with no elongation).

This configuration with 11 × 11 subapertures is chosen to be illustrative, but 100 × 100 subapertures are used for the

simulations. Here, the field of view of the 3.8m subapertures is 10′′, and the squares represent both the subapertures and

their field-of-view limits. Launching from the center minimizes the elongation and produces radially elongated spots:

this is the chosen configuration for the Thirty Meter Telescope (TMT) (Gilles & Ellerbroek 2006).

where the vector of data, d, is obtained from the vector of wavefront samples on a suitable grid, w, using a
linear model S of the wavefront sensor. Vector n stands for an additive zero-mean noise independent from the
data. We will assume a Shack-Hartmann wavefront sensor with Fried’s geometry for S (Fried 1977).

We consider four different methods to invert Eq. (2.1), corresponding to the following equations:
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Equations (2.2) and (2.5) assume uniform Gaussian noise. The equations are written in the form A · x = y

where we are looking for x. Indeed, we solve them with the conjugate gradient method (Barrett et al. 1994).
This yields the “minimum norm” solution (i.e. the method is equivalent to use the pseudo-inverse of A) when
A is not invertible. Also, the conjugate gradient method does not need to compute the inverse of A which is a
huge matrix in our ELT case (∼ 2 104

× 104 for our 100 × 100 subapertures wavefront sensor). For computing
efficiency, we use the Fractal Iterative Method (Tallon et al. 2007), a preconditioned conjugate gradient method
using a so-called fractal operator and an optimal diagonal preconditioner.

In our simulations, we introduce some simplifications to only focus on the effect of the spot elongations.
We assume that the LGSs can measure tip/tilts and that all the turbulence is in the pupil plane. Thus the
results are not affected by any focus anisoplanatism or tip/tilt indetermination. We also assume a Gaussian
distribution of the vertical density profile of the sodium atoms, centered at altitude 90 km, and spots with
elongated Gaussian shapes at the focus of the 100× 100 subapertures of the Shack-Hartmann wavefront sensor.
The actual noise covariance matrix Cn is determined by assuming that the noise is proportional to the size
of the spot (Rousset 1999). Seeing is set to 0.7′′ at 589 nm (i.e. r0 = 17.4 cm at 589 nm), corresponding
approximately to median conditions at Paranal observatory, with an outer scale L0 = 22m.

3 Simulation results

From the same simulated data, the aim is to compare the errors of the wavefront reconstructions obtained with
the different reconstruction algorithms listed in Sec. 2.
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Fig. 2. Comparison of the wavefront errors obtained with the different reconstruction methods, depending on the amount

of elongation. On the left, one LGS launched from the center. The same curves are obtained when combining three LGSs

three times fainter (noise variance three times higher). On the right, three LGSs launched from the edge. Corresponding

configurations are shown on Fig. 1. Noise covariance matrix is only used for Weighted LS (Eq. 2.3) and MAP (Eq. 2.4),

while priors are only used for MAP and MAP+uniform noise (Eq. 2.5). The dashed vertical line corresponds to the

typical mean FWHM of sodium density profile.

Results for a single LGS launched from the center of the pupil are shown in Fig. 2 (left) as a function of
the amount of elongation (FWHM of the sodium layer is varied from 0 to 15 km). Noise has been fixed to 1
rad2/subaperture where no elongation, with a spot size of 1.2′′ FWHM. This phase error at 589 nm corresponds
to ∼ 0.046′′rms of jitter, or ∼94 nm rms of wavefront error, measured as the rms path difference between the
edges of the subapertures. The signal to noise ratio per subaperture is ∼ 5.5.

If we consider the FWHM for the mean sodium profile (10 km), we can see a significant difference between
the worse method (Least Squares) where the elongation increases the wavefront error by a factor of 2.4, and the
best method (MAP) where this factor is only 1.6. For such an elongation, MAP gives a wavefront error half as
big as Least Squares. When no elongation, we can see that using priors (MAP methods) allows the variance of
the error to be reduced by almost a factor of two as already found by Béchet et al. (2007). The curves show
that the usefulness of the priors increases with the elongation. We interpret this behavior by an increasing error
on the radial modes because of the radial elongation: priors allow reducing this error by using covariances with
the other modes that are less affected by the elongation.

If we equally split the light of this single LGS into 3 LGSs launched from the center, the variance of the noise
will be three times higher, i.e. 3 rad2/subaperture at 589 nm. Since the three LGSs will give three times the
same radially elongated spots (Fig. 1, left), the combination of the three independent measurements will give
again the same results (Fig. 2, left). We expect that launching these fainter LGSs from the edge (Fig. 1, right)
will improve the reconstruction since each subaperture will see three spots elongated in different directions. This
is shown on Fig. 2 (right). The use of the noise covariances is now critical. Indeed, not to take into account the
noise covariances makes the residual wavefront errors to be much higher (Least Squares and MAP with uniform

noise methods). The noise covariance matrix allows the reconstruction to properly weight the measurements in
each subaperture in order to take into account mainly the measurements in the most accurate directions (i.e.
the directions perpendicular to the elongations). We can notice that MAP method with any elongation gives a
better reconstruction than using least squares (weighted or not) without elongation.

Further, when the actual noise covariances are used, Fig. 2 shows an asymptotic behavior as the sodium
profile FWHM increases, indicating that as soon as the elongation is significant, the relative weight of the
corresponding measurement is so small that it has no more influence. Yet increasing the elongation does no
more degrade the situation. In such a regime, we could then set to zero the weights on these measurements
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Fig. 3. Reducing the field-of-view truncates the most elongated spots (left) and prevent the measurement of its displace-

ment along the elongation. Simulations (right) show that the quality of the reconstruction is not significantly degraded

if 50% of the spots are truncated. The increase for higher proportions is due to the loss of photons.

without significant loss of accuracy. This also means that we should not even need these measurements, so
that we could reduce the size of the detectors even if the spots are truncated (Fig. 3, left). We consider in this
simulation that a spot is truncated if it is cut at more than 1% of its maximum. Figure 3 shows that the quality
of the reconstruction is not significantly degraded if 50% of the spots are truncated.

4 Conclusion

This work shows that, even if priors are helpful, using the actual noise covariances in the reconstruction algorithm
is critical. When combining several LGSs launched from the edge of the pupil, the effect of the elongation is
then mitigated, even if we use detectors as small as those used when launching from the center, so truncating
50% of the spots.

This activity is supported by the European Community (Framework Program 6, ELT Design Study, contract No 011863). The
algorithms and the simulations presented in this article have been implemented in Yorick, a free data processing language written
by D. Munro (http://sourceforge.net/projects/yorick/).
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