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TITAN’S FORCED ROTATION - PART II: THE RESONANT WOBBLE
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Abstract. Our knowledge of the gravity field of Titan has been recently improved thanks to the fly-
bys of Cassini spacecraft, that provided us first values of Titan’s J2 and C22, unfortunately without any
indication of the polar inertial momentum C. Anyway, these data allowed us to give last year a first 3-
dimensional description of the rotation of Titan, seen as a rigid body. In particular, we pointed out an
interesting phenomenon forcing the wobble (i.e. the angular separation between Titan pole axis and angular
momentum), that we suspected to be nearly resonant. This year we present a study of this resonance,
involving a free libration around the Cassini equilibrium and a proper mode given by the orbital ephemerides.
The resonant argument has been clearly identified, and its behaviour has been investigated using the Second
Fundamental Model of Resonance. We show that in case of capture, the wobble might be pumped to several
degrees. Moreover, we propose an original formula to estimate the contribution of the wobble in the tidal
internal dissipation of a synchronous satellite. A significant wobble might cause a wrong estimation of the
rotation of Titan.

1 Introduction

Last year Noyelles et al. 2007 we presented a 3-degree of freedom theory of Titan’s rotation, seen as a rigid
body. Such a study is possible since the fly-bys of Cassini spacecrafts that provided us information on Titan’s
gravity field, especially J2 and C22. Unfortunately, a third useful parameter, i.e. the polar inertial momentum
C, remains unknown. That is the reason why we study Titan’s rotation for several realistic values of C.

Our study showed an interesting behavior of Titan’s wobble (i.e. the angular separation between Titan’s
polar axis and its angular momentum), when C is close to 0.35MR2 (see Fig.1).

2 The resonant Hamiltonian

We start from the following Hamiltonian:
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in which the used variables are the modified Andoyer’s variables. In this Hamiltonian the notations are as
follows:

• P is the norm of Titan’s angular momentum

• ηq and ξq locate the angular momentum in the body frame

• n is Titan’s mean motion
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C = 0.31MR2 C = 0.35MR2

Fig. 1. Two different behaviors of the wobble J for 2 different values of the polar inertial momentum C. We note that

for C = 0.35MR2, J seems to have a quasi-resonant behavior, taking important values.

• (x, y, z) is the unit vector pointing to Saturn in Titan’s reference frame

• γ1, γ2, δ1 and δ2 are associated to Titan’s gravity field

• δs is associated to Saturn’s oblateness coefficient J2.

We now perform an analytical study requiring several canonical transformations, consisting in

1. Determining the equilibrium, and centering the Hamiltonian around it.

2. Untangling the proper modes Henrard & Lemâıtre 2005.

3. Doing a polar canonical transformation to express the small oscillations around the equilibrium in angle-
action variables.

After these transformations, the Hamiltonian becomes

K = N + P
= ωuU + ωvV + ωwW + P (2.2)

in which N is the quadratic Hamiltonian depending only of the proper modes of the system (u, v, w, U, V,W ),
and P is the perturbation depending on the proper modes of the orbital motion.

Table 1. Synthetic representation of ηq +
√

−1ξq = sin J exp(−
√

−1l), associated to the wobble, for C = 0.31MR2.

φ6 and Φ6 are proper modes of Titan’s orbital dynamics. They are associated respectively to Titan’s pericenter and

ascending node.

N◦ Amp. ×104 Phase (◦) T (y) Ident. Cause

1 9.12391728 −51.69 306.33602 w
√
W

2 6.01688587 51.69 −306.33605 −w
√
W

3 5.73033451 158.48 351.70284 φ6 − Φ6 e6γ6

4 3.83212940 −158.48 −351.70284 Φ6 − φ6 e6γ6

5 0.63642954 −35.86 135.27368 v − Φ6

√
V γ6

6 0.38395548 35.86 −135.27368 Φ6 − v
√
V γ6

The Tab.1 gives the synthetic representation of the variable associated to the wobble, in the case of C =
0.31MR2. We can see that the main forced contribution is φ6 − Φ6, with a period of 351.7 y. When C gets
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closer to 0.35MR2, the frequency of the proper mode w gets close to 350 y, so we can hint that the resonant
argument is w + Φ6 − φ6. This has been checked in numerical simulations.

Starting from the Hamiltonian 2.2 we perform this last canonical transformation:

u U
v V
θ = w + Φ6 − φ6 Θ = W

giving this new Hamiltonian T :

T = ωuU + ωvV +
(

ωw + Φ̇6 − φ̇6

)

Θ + T2. (2.3)

We then average over every angle except the resonant one, considered as the only slow argument, and we
obtain:

T = ψΘ + µΘ2 + ǫ
√

2Θcos θ. (2.4)

This Hamiltonian is the classical Second Fundamental Model of Resonance Henrard & Lemâıtre 1983, describing
the evolution of the system in deep resonance. Its equilibrium is the positive root of the cubic equation
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. It corresponds to a forced value of the “free” amplitude

of the wobble, forced by the resonance (see Tab.2).

Table 2. The wobble forced by the resonance.
C

MR2 W0 (forced) < J >
0.34 (no real solution)
0.35 0.342 80.368◦

0.355 0.108 40.702◦

0.3555 0.034 22.337◦

0.355551 0.010 12.034◦

0.35555146967191 0.009 11.413◦

0.35555146967192 (no resonance)

3 Internal dissipation

The differential gravitational attraction of Saturn on Titan raises a tidal bulge. The misalignement of the tidal
bulge with the direction Titan-Saturn induces a loss of internal energy, that is usually expressed as:
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In particular, we have dE
dt

∝ e2 because the misalignement of the tidal bulge is due to Titan’s orbital eccentricity.
If Titan’s wobble J0 is significant, it alters the orientation of the tidal bulge and thus it should be taken into
account in the calculation of the internal dissipation. That is the reason why we propose this original formula :

dE

dt
=

3

2
J2

0

(n+ w

w

)2 k2

Q
f
GM2

Y
nR2

a6
(3.2)

and the total expression for the internal dissipation is now:
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A numerical application shows that the contribution of the wobble on the internal dissipation is predominant
if J0 > 4.4◦, what is realistic. One can notice the term n+w in the contribution of the wobble. It is the sum of
two frequencies: the orbital frequency (that is also the spin rate) and the wobble frequency. It means that the
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frequency of the tidal excitation due to the wobble is not n (as it the case for the eccentricity) but n+ w ≈ n,
because of a composition between the two motions (spin and wobble). If the wobble is significant, a measurement
of the spin rate might be altered and a take a higher value than the actual spin rate.

4 Comparison with the observations

Recently, the Cassini RADAR Team measured a slightly super-synchronous rotation for Titan, the shift being
about +0.36◦/y Stiles et al. 2008. An a priori neglected wobble could be an explanation, but at least another
one exists: Tokano & Neubauer (2005) suggested that seasonal energy exchanges between Titan’s atmosphere
and its surface provoke a variation of the length of the day (i.e., the spin rate). Lorenz et al. (2008) interpret
the measured super-synchronous rotation as the signature of an internal ocean, that decouples the rotation of
Titan’s crust from its mantle, and makes it highly sensitive to the seasonal energy exchanges. Unfortunately,
one cannot discriminate a secular contribution to a seasonal one in Titan’s measure of spin, because it has been
computed from about 2-years irregularly spaced data. Their accuracy depends on the flybys of the spacecraft
near Titan, and to the distance between Titan and the spacecraft. Moreover, the seasonal period is 29 years
for Saturn and its satellites, far too large to be detected.

5 Conclusion

We have elaborated the first 3-degree of freedom theory of Titan’s rotation, seen as a rigid body. This theory
permitted us to enlight a likely resonance forcing the free wobble. This wobble might cause an alteration of the
measure of the spin rate by Cassini spacecraft.

The next step is now to use a more realistic model for Titan, i.e. in modeling an internal ocean and also
the atmosphere. Such a study has been initiated by Henrard (2008), in taking account of a liquid core in the
rotation of Io. The goal is to obtain a convergence between the expected rotation and the observations.

This study has been published in Noyelles et al. (2008) and Noyelles (2008), in which the reader can find
more explanations.
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