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Abstract. This work focuses on a numerical implementation of the local physics of black hole astrophysical
spacetimes. This is done by imposing boundary conditions on a certain formulation of Einstein Equations,
namely the fully constrained formalism(FCF) of Bonazzola et al.(2004). We here make use of the Isolated
Horizon formalism of Ashtekar et al. (1999), aiming at a local characterization of a black hole region. This
horizon can be seen as an intuitive physical object (contrary to, e.g., the event horizon). We thus solve the
Einstein Equations, using 3+1 formalism, on 3-slices of spacetime excised by marginally trapped surfaces.
We are then able to recover the Kerr spacetime outside the black hole region only by prescribing that our
grid boundary behaves indeed like an Isolated Horizon. Contrary to some earlier works, we take into account
the non-conformal part of our 3-metric, making use of a no-boundary method on the horizon. Our spacetime
is then perfectly stationary.We compare our results with previous ones, and show accuracy results, involving
among others a verification of the virial theorem, and a refined Penrose inequality studied in Jaramillo et
al. (2007).

1 Introduction

Trying to accurately describe black holes solutions as evolving physical objects in numerical simulations is
of direct interest in astrophysics. We focus here on a particular approach, trying to describe black holes as
physical objects represented by their horizons, and using numerical excision techniques. Defining the physical
laws for event horizons of black holes has been tried some time ago (see Thorne et al.(1986)). However, being
global objects, applying evolution laws to event horizons is almost impossible due to their non causal behaviour.
Alternative local characterizations, based on the concept of trapped surfaces, have been recently formulated.
We will use here the isolated horizon formalism, prescribing the physics of non-evolving black hole regions.

Following the prescription of Gourgoulhon & Jaramillo (2006) and pursuing the numerical explorations of
Cook and Pfeiffer (2004) and Jaramillo et al. (2007) among others, we try to numerically implement those
objects as boundary conditions imposed on (3+1) Einstein Equations, in a 3-slice excised by a 2-surface. This
is done here using the Fully Constrained Formalism (FCF) of Bonazzola et al. (2004), with spectral method
high accuracy resolutions using the LORENE library (http://www.lorene.obspm.fr). We drop out the usual
conformal flatness hypothesis for our simulation, so that we can exactly recover a stationary rotating vacuum
slice of spacetime. Issues raised by this approach require a particular handling of boundary conditions for the
non conformally flat equation. In our case, no additional boundary condition is required.

2 Trapped surfaces and Isolated Horizons as a local description of black hole regions

We refer the reader to Ashtekar and Krishnan(2004) for a review. The global concept of a trapped surface relies
on the concept of expansion: this is defined as the area rate of change along geodesics orthogonal to a 2-surface
in a spacetime (negative if the area is decreasing along the geodesics from the surface, positive otherwise).
A spacelike closed 2-surface is said to be a trapped surface if expansions along the two future null geodesics
normal to the surface are less than zero. This clearly characterizes strong local curvature. A marginally outer
trapped surface in an asymptotically flat spacetime has the expansion along the outer null geodesics normal
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c© Société Francaise d’Astronomie et d’Astrophysique (SF2A) 2008



292 SF2A 2008

to the surface to be exactly zero. If the cosmic censorship holds, there is an equivalence between a marginally
outer trapped surface and the presence of a black hole region enclosing it. These surfaces are always situated
inside the event horizon.

Isolated horizons are aimed at describing stationary vacuum black hole regions. They are defined as 3-
dimensional tubes foliated by marginally outer trapped surfaces, and with a null vector field as generator. We
prescribe in addition that the metric is not evolving along the generators. A consequence is that any slice of an
isolated horizon has in addition a vanishing shear tensor. The shear 2-tensor is a geometrical quantity on the
2-surface that measures the geometrical strain undergone by this surface.

This formalism has been extensively studied as a diagnosis for simulations involving black holes, where
marginally trapped surfaces are found a posteriori with numerical tools called apparent horizon finders (Lin et
al. 2004). We here want to impose properties on a surface that will turn out to be an Isolated Horizon,and
simulate what happens outside of it. This approach has been made by Cook and Pfeiffer (2004) and Jaramillo
et al. (2007) for the single black hole case. The main improvement in this work is the dropping out of the
conformal flatness hypothesis, leading to more accurately stationary data in the rotating case.

3 A fully constrained formalism of Einstein Equations

For technical details, the reader is referred to Bonazzola et al. (2004) or Gourgoulhon (2007).
The 3+1 formalism of General Relativity, foliates a 4-dimensional globally hyperbolic variety with spatial

3-slices endowed with an induced 3-metric γij and an extrinsic curvature Kij. The 4-metric of an asymptotically
flat, globally hyperbolic variety (M) writes:gµνdx

µdxν = −N2dt2 + ψ−4γ̃ij(dx
i + βidt)(dxj + βjdt), where N ,

ψ, βi and γij are respectively the lapse scalar, the conformal factor, the shift vector and the conformal metric.
We also make the decomposition γ̃ij = f ij + hij , where f ij is the flat metric associated with our 3-slice, and
hij The deviation of the metric from conformal flatness. Setting arbitrarily hij = 0 before caluclations is called
the conformal flatness approximation (or Isenberg-Wilson-Matthews theory of gravity).

This decomposition allows us to write the 3+1 Einstein system (see Gourgoulhon 2007). We will place
ourselves in the FCF of Bonazzola et al. (2004). We fix the gauge to be the Dirac gauge: the divergence of
the metric with respect to a flat derivative associated with the 3-slice must vanish. Moreover, we seek to find
data on a 3-slice that are stationary in our coordinate system (all the time derivatives vanish). Under these
approximations, the 3+1 system writes:

∆ψ = Sψ(hij ,Kij , N, ψ, βi) (3.1)

∆(Nψ) = SNψ(hij ,Kij , N, ψ, βi) (3.2)

∆βi +
1

3
DiDjβ

j = (Sβk(hkj ,Kkj , N, ψ, βk))i (3.3)

∆hij −
ψ4

N2
LβLβh

ij = S
ij

hkl(h
kl, N, ψ, β,Kkl) (3.4)

The SX are nonlinear sources. The three first equations, in ψ, Nψ and βi, stem from the Einstein Hamil-
tonian and Momentum constraints. In a fully constrained evolution scheme, they are solved at each timestep.
The last tensor elliptic equation comes from the Einstein dynamical equation in the case of stationarity. Several
works deal with initial data by simply applying the conformal flatness hypothesis, and do not solve it. Here
we will solve it numerically for a single black hole numerical spacetime in stationarity. We will use the excision
technique for this calculation, and a set of boundary conditions coming from the isolated horizon formalism.

4 Boundary conditions for Einstein Equations, Numerical resolution

We try to simulate the space 3-slice outside of an excised sphere fixed at a radius rH = 1 in our spherical
coordinates. Following the prescriptions of Cook and Pfeiffer (2004) and Gourgoulhon & Jaramillo (2006), we
find boundary conditions for our elliptic equations (3.2), (3.3),(3.4) by prescribing the sphere to be an isolated
horizon slice: If we write βi = b̃s̃i − V i, where s̃i is the spacelike outer unit normal to the excised surface, we
adapt our coordinates to the geometry of our horizon by setting our time evolution vector to be null on that
surface: b̃ = N

ψ2 . This ensures the horizon stays at a fixed radius during time evolution. The vanishing of the
shear translates into a Dirichlet condition for the other part of the shift, being proportional to the rotational
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symmetry vector: V i = Ωr(
∂
∂φ

)i, where Ωr is the rotation rate parameter of the horizon in our coordinates. The

vanishing expansion gives an approximate Neumann condition for variableNψ: 4∂r(Nψ) = −N
ψ
Kij s̃

is̃j−N Di s̃
i

ψ3 .
Finally, we set arbitrarily the boundary condition on the lapse to be a fixed value of 0.3.

There remains the boundary condition on the equation for hij . We will use for the resolution the scalar
variables A and B̃ described in Cordero et al. (2008), and adapted to the Dirac Gauge choice. With the Dirac
gauge constraints and an additional determinant condition, the tensor equation reduces to 2 elliptic scalar
equations(Lβ is the Lie derivative along βi):

∆A−
ψ4

N2
LβLβA = AS(hij , N, ψ, β,Kij) (4.1)

∆̃B̃ −
ψ4

N2
LβLβB̃ = B̃S(hij , N, ψ, β,Kij) (4.2)

∆̃ is a modified elliptic laplace operator, and AS and B̃S are the A and B̃ potentials associated to the tensor
source. Once these two quantities are known, one can entirely reconstruct the tensor hij using the Dirac gauge
and the determinant condition. The gauge is then satisfied by construction at each step.

From these two scalar equations, we have been able to exhibit approximate equations by linear operators
acting on A and B̃, and with particular properties. We decompose all our operators and unknowns into spherical
harmonics. Using the condition b̃ = N

ψ2 , we are able to simplify the double Lie derivative operator and separate

radial terms from the others, so that we can approximately write (for example for A(r, θ, φ) = ΣAlm(r)Y ml (θ, φ)):

[−α(r − rH) − δ(r − rH)2]
d2

dr2
Aℓm +

2

r

d

dr
Aℓm −

ℓ(ℓ+ 1)

r2
Aℓm = AS +

ψ4

N2
(LβLβA)∗∗ℓm. (4.3)

α and δ are real numbers determined by the data.
The ordinary differential operator on the left is singular; a search for analytical homogeneous solutions gives

a Kernel of dimension one for usual values of α and δ. By fixing the behaviour of the fields at infinity, there is
no further need for a boundary condition on the excised frontier for solving the equation. The same analysis
holds for the operator acting on B̃.

This is not an actual proof that our two scalar equations do not need any boundary condition prescription,
because the right hand side depends (non-linearly) on the variable. However, we implement our resolution
iteratively by inverting at each step these weakly singular operators; our system being convergent, this indicates
that indeed, no boundary condition has to be imposed globally for the determination of hij . The question
remains open why it is actually the case, and whether this result applies to more general cases involving isolated
horizons.

Our simulation is made on a LORENE 3D spherical grid, using spherical harmonics decomposition for the
angular part and spectral multidomain Chebychev decomposition for the radial part. The mapping consists in
4 shells and an outer compactified domain, so that infinity is inside our grid and we have no boundary condition
to put at a finite radius. We impose the values of all the fields to be equivalent at infinity to those of a flat
3-space. Except for stationarity, all simulations are done with no assumption of coordinate symmetry.

Having set the shape and the location of the surface in our coordinates, and the lapse being set to a fixed
value of 0.3, we are only left with one parameter which is the horizon rotation parameter Ωr. We generate two
sets of initial data, spanning the rotation parameter from zero (Schwarzschild solution) to 0.3. One set will give
the solution for the whole differential system, while the other will give the Conformally Flat Data, where instead
of solving the equation for the hij variable, we set it to zero (this is the most commonly used approximation for
black hole initial data: however, we know that the Kerr spacetime does not admit any conformally flat slices).

Figure 1 presents the relative accuracy obtained for the Einstein constraints in the non conformally flat
case, as well as the accuracy for the Einstein Dynamical equation in the non conformally flat and conformally
flat case (this is the only equation not solved in this case). We actually see a major improvement, showing the
discrepancy between the usual conformal flatness approximation that one uses generically to simulate rotating
spacetimes in numerical relativity, and the actual stationary Kerr solution. Another test of stationarity can be
the comparison between the ADM mass and the Komar mass at infinity, the latter being tentatively defined with
the supposed Killing vector ( ∂

∂φ
)i (We don’t impose any Killing symmetry, except on the horizon: Although

we know, by the Black Hole rigidity theorem, that an accurate resolution of Einstein Equations would impose
this vector to be so). This is done in figure 2. The comparison between the ADM mass and the Komar mass is
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Fig. 1. Accuracy for Einstein Equations resolution
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Fig. 2. Relative difference between the ADM and Komar mass

in conformally flat and non-conformally flat cases

directly linked to the virial theorem of General Relativity put forth by Gourgoulhon & Bonazzola (1994). The
concordance between those masses is equivalent to the vanishing of the virial integral.

We also have computed the accuracy of verification of a Penrose-Like inequality studied in Jaramillo et al.
(2007), being the following:

ǫA =
A

8π(M2

ADM +
√

M4

ADM − J2)
≤ 1 (4.4)

A is the area of the horizon, and MADM and J are respectively the ADM mass and the Komar angular
momentum associated with the 3-slice. Being a little more stringent that the actual Penrose inequality, it is
supposed to be verified for all spacetimes containing an apparent horizon, and it is an equality only for actual
Kerr apparent horizons. We find an accuracy of 3.10−8 at most for this equality in our case. This is another
strong hint of the accuracy of our spacetime solution.

To our knowledge, it is the first time the non conformally flat part is numerically computed in a black
hole spacetime using only a prescription on the stationarity of the horizon. Further accuracy tests, including
geometrical properties of the horizon and the spacetime will be presented in an upcoming paper. The authors
warmly thank Eric Gourgoulhon and Jose Luis Jaramillo for numerous fruitful discussions.

References

Ashtekar, A., & Krishnan, B. 2004, Liv.Rev.Rel.2004-10

Bonazzola, S., Gourgoulhon, E., Grandclément, P., & Novak, J. 2004, Phys. Rev. D, 70, 104007

Cordero, I., Ibanez, J.M., Gourgoulhon, E., Jaramillo, J.L., & Novak, J. 2008, Phy.Rev.D, 77, 084007

Cook, G.B, & Pfeiffer, H. 2004, Phys.Rev.D, 70, 104016

Gourgoulhon, E. 2007, 3+1 Formalism and Bases of Numerical Relativity, gr-qc/0703035

Gourgoulhon, E., & Bonazzola, S., 1994, Clas.Quant.Grav., 11, 443-452

Gourgoulhon, E., & Jaramillo, J.L., 2006, Phys.Rep., 423, 159

Jaramillo, J.L., Ansorg, M., & Limousin, F. 2007, Phys.Rev.D, 74, 087502

Jaramillo, J.L., Ansorg, M., & Vasset, N. 2007, ERE07 proceedings, gr-qc/0712.1741

Lin, L.M., & Novak, J. 2007, Class.Quant.Grav., 24, 2665

Thorne, K., Price, R., & MacDonald, D. 1986, Black Holes: The membrane paradigm, Yale University Press


