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Abstract. Vishniac instability has been theoretically studied in supernova remnants where it is supposed

to explain the fragmentation of the interstellar medium. However its role is not fully demonstrated in these

objects. Numerical simulations with the HYDRO-MUSCL hydrodynamic code has been realised to simulate

this instability in order to compare the numerical growth rate with the Vishniac analytical solution.

1 Introduction

Among the instabilities arising in astrophysical systems, and in particular in supernova remnants (SNRs), the
Vishniac instability is not very well known. In their original analysis of global perturbations, Vishniac (1983)
and Ryu & Vishniac (1987) identified the criteria that allows to compute the growth of a perturbation in a thin
shell of shocked matter. The instability depends on the direction of two opposite forces: the thermal pressure
pth due to hot SNR gas (pushe outwards) and the ram pressure pram due to the accretion of the surrounding
interstellar matter (ISM) on the shock front (compresse inwards). If the ISM is uniform, the two pressures
keep the same directions and the shock front is stable; but in the case of non-uniform ISM, the shock front
is distorted, the two forces do not counterbalance and oscillations can develop and grow. In a linear stability
analysis, Vishniac (1983) used the infinitely thin shell approximation to study the perturbation equations and
numerically solved the corresponding system. In a recent study (Cavet et al, 2007) an analytical solution for
the growth rate has been determined in this case, but this approximation does not allow to access the general
instability criteria. Aiming to investigate the more realistic physical cases of a thin shell with finite thickness,
the growth rate is calculated through numerical simulations of perturbed radiative blast waves, and compared
with the analytical one.

2 Numerical simulations

Numerical simulations are performed with the HYDRO-MUSCL code developed by our team. This Eulerian
code solving hydrodynamic equations, uses a regular cartesian grid and an adaptative time step. The underlying
numerical method is a MUSCL-Hancock finite volume scheme and a HLLC Riemann solver (Toro, 1999). In
order to perform 2D cylindrical hydrodynamic simulations for the propagation of a shock wave in the ISM,
we induce an initial explosion by depositing a strong amount of energy in the form of pth at the center of a
box. In a first simulation, we study the initial phase of the shock evolution where the gas is adiabatic (the
polytropic index is γ = 5/3) and then the shock radius can be approximated with the Sedov law (see Keilty et

al, 2000). The simulation is stopped at (t0, r0) i.e when the radius evolves according to the self-similar solution
and when the density on the shock front reaches the strong shock limit. We use this result as input data in
the following simulation. In the second calculation, axial velocities are directly modified in data in order to
obtain the snowplow radius evolution and radiative losses are taken into account by γ = 1.1. We introduce
high-density spots (ρspot ∝ ρshock) ahead of the shock wave to perturb the shock front and let the system evolve.
The analytical form of this perturbative spots are (Ryu & Vishniac, 1987): ρ̃ = ρ/ρISM = δρ̃i(ξ) Ylm(θ, Φ) ts.
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To determine the initial profile of these spots, we have to evaluate the function δρ̃i(ξ) of the dimensionless
spatial parameter ξ. In the analytical part, this function is not explicitly estimated and only determined by
numerical means. We have obtained an approximated value δρ̃i(ξ) ≈ −(2a−2)ξ2a−3 with the method developed
in Kushnir et al (2005). Then in the numerical simulations we introduce a finite number of spots to take into
account the perturbative mode number l and we add a bi-dimensional spot shape in order to reproduce the
deformation profile according to r, θ, φ.
Numerically we observe that the two spots create radial oscillations both on density and pressure, and density
perturbation on the shock front. We remarke also that in the two local pressure deformations of the shell shape,
pth and pram are not aligned as in the analytical pattern. Thus in this numerical configuration, the Vishniac
instability criteria γ and δρ̃i(ξ)Ylm are fulfilled. In order to observe the evolution of the growth rate s of this
small perturbations and to compare s with the theoretical results, we let run the simulation during t = 10× t0.
In Fig. 1 we superpose ten snapshots of the density profile projected on the y-axis and normalized for the shock

Fig. 1. Ten dimensionless density profiles ρ̃ versus y-axis Fig. 2. Evolution of perturbation growth rate s versus t

front value which enables to measure the normalized peak oscillations δρ̃ during this period. We estimate the
growth rate by the relation: s = [ln(δρ̃) − ln(δρ̃(1) Ylm)] / ln t where δρ̃(1) = 1.8. Figure 2 shows the evolution
of the growth rate s(t) and its stabilization to a limit value s = 3.7 × 10−2 clearly observed. Compared to
Vishniac prediction, this value seems too low. However, we have chosen a small mode number l ∼ 8 due to
the presence of only two high density spots. If we increase the number of initial spots, l is also increasing and
can reach the optimal mode number l = 40 of the theoretical pattern. However due to numerical constraints
it is not easy to multiply initial high-density spots on the way of the thin shell. In future simulations, we will
improve the stability study using a multi-processor version of HYDRO-MUSCL code. We will combine this
new simulations with profiles of perturbed shell designed by analytical tools that will enable a better control of
spatial shape and thus of the value of the mode number l. Furthermore an experiment of the Vishniac instability
realized by our team is planned on the LIL high-power facility (Bordeaux, France) in 2009.
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