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Abstract. The magneto-rotational instability (MRI) is widely recognized as the most promising process to
provide a turbulent transport satisfying the observational constraints. Although nearly all disk models make
reference to this instability as the source of turbulence, important aspects of the MRI-driven turbulent trans-
port properties are not well-known, in particular concerning the ”resistive” transport. We have performed
local simulations of the MRI to quantify this problem. We find that the resistive transport is systematically
smaller than the angular momentum transport for a given configuration, and that the resistivity tensor is
anisotropic.

1 Introduction

The origin of angular transport in accretion disks has always been a central problem in the disk community. The
first α model (Shakura & Sunyaev 1973) already assumed a strong level of turbulence, leading to an effective
viscosity orders of magnitude higher than molecular viscosity. However, the physical origin of this turbulence
in disks is still largely discussed.

In a seminal paper, Balbus & Hawley (1991) have identified an MHD instability, the magnetorotational
instability (MRI) that drives turbulence in the nonlinear regime. This instability has been extensively studied,
mainly with local unstratified (Hawley et al. 1995) and stratified (Stone et al. 1996) 3D simulations, and global
(Hawley 2000) disk simulations. These simulations have shown that MRI turbulence was an efficient way to
transport angular momentum, although the role of microphysical processes was largely underestimated (Lesur
& Longaretti 2007; Fromang et al. 2007).

MRI turbulence may also produce resistive transport (transport of magnetic fields) in discs. This transport
is a key ingredient of accretion-ejection models (see, e.g. Ferreira 1997; Casse & Ferreira 2000 and references
therein). This turbulent resistivity ηT is parameterized with the Shakura-Sunyaev ansatz as ηT = αηvAH (vA

is the Alfvén speed); stationary accretion ejection models require an anisotropy of the turbulent resistivity
transport limited to a factor of order unity, and a very efficient turbulent tranport with αη . 1.

In any case, turbulent resistivity is an issue in its own right, and in this paper, we present new numerical
results aimed at quantifying more precisely the resistive transport due to MRI turbulence. We first describe the
physics and the numerical methods we used to study turbulence in disks. Then, we introduce the basics of the
turbulent resistivity model, and we present the methodology used along with some preliminary results. Last,
our findings are discussed along with some future line of work.

2 Shearing-box equations and numerical method

MRI-related turbulence has been extensively studied in the literature, and we will recall here only briefly the
basic equations for the shearing-box model. The reader is referred to Hawley et al. (1995), Balbus (2003) and
Regev & Umurhan (2008) for an extensive discussion of the properties and limitations of this model. Since MHD
turbulence in discs is subsonic, we will work in the incompressible approximation, which allows us to eliminate
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sound waves and density waves. We also neglect vertical stratification, consistently with the local shearing-box
model (Regev & Umurhan 2008). We include in our description a molecular viscosity and resistivity to minimize
the artifacts of numerical dissipation.

The shearing-box equations are found by considering a Cartesian box centred at r = R0, rotating with the
disc at angular velocity Ω = Ω(R0) and having dimensions (Lx, Ly, Lz) with Li ≪ R0. Assuming R0φ → x and
r−R0 → −y, one eventually obtains the following set of equations for the deviations v from the local Keplerian
profile:

∂tv + ∇ · (v ⊗ v) = −∇Π + ∇ · (B ⊗ B) − Sy∂xv

+(2Ω − S)vyex − 2Ωvxey + ν∆v, (2.1)

∂tB = −Sy∂xB + SByex

+∇ × (v × B) + η∆B, (2.2)

∇ · v = 0, (2.3)

∇ · B = 0. (2.4)

The boundary conditions associated with this system are periodic in the x and z direction and shearing-
periodic in the y direction (Hawley et al. 1995). These equations involve the mean shear S = −r∂rΩ = (3/2)Ω
(a Keplerian rotation profile is assumed) . The generalized pressure term Π = P/ρ0 + B

2/2. Finally, the
magnetic field is expressed in Alfvén-speed units, and all the velocities are given in units of SLz. These
equations are solved numerically using a Fourier Galerkin representation of (2.1)–(2.4) in a sheared frame (see
Lesur & Longaretti 2005).

2.1 Turbulent resistivity definition

If MRI turbulence can be modelled as a turbulent resistivity on large scales (an assumption supported by our
numerical results), one can define a large scale mean field B̄ and velocity V̄ plus fluctuating (turbulent) fields
b and v. We assume 〈b〉 = 0 and 〈v〉 = 0 where 〈〉 denotes an ensemble (or time, under ergodic hypothesis)
average. The averaged induction equation reads:

∂tB̄ = ∇ × (V̄ × B̄) + ∇× Ē + η∆B̄ (2.5)

where we have defined the mean electromotive force (EMF) Ē = 〈v × b〉 and we have used the definition
〈B〉 ≡ B̄ (same for V̄ ). The turbulent resistivity hypothesis assumes (in tensorial notations):

Ēi = −ηT
ikJ̄k (2.6)

where ηT is the (constant) turbulent resistivity tensor1. To confirm this model and compute turbulent resistivity
coefficients, we have to find a linear correlation between the components Ēj and J̄i.

2.2 Numerical protocol

To compute the turbulent resistivity, one needs a mean current, which is not naturally present in local (shearing
box) simulations. To produce this current, we have chosen to impose a large scale and non homogeneous field in
the box. This method differs from the test field technique of Brandenburg and coworkers (see, e.g. Brandenburg
et al. 2008 and references therein); the relative strengths and weaknesses of the two methods will be discussed
elsewhere.

In practice, the current is produced in our Galerkin representation by forcing the largest Fourier mode in one
direction to a given value B0. To trigger the MRI, we impose a mean vertical field B0

z = 0.1 for which the largest
mode kz = 2π/Lz becomes unstable with a growth rate γ ≃ S/2. The aspect ratio is Lx×Ly×Lz=4×2×1. The
factor 2 in Ly allow us to trigger more easily secondary instabilities in the strong mean vertical field cases (see
Goodman & Xu 1994 and Bodo et al. 2008). The resolution used is 128×128×64, similar in cell size to the one

1A more general relation Ei = −ηT
ijk

∂jBk where ηT
ijk

is an antisymmetric tensor is sometimes considered. We won’t use it here

for simplicity, as only one component of ∂jBk is used at any given time.
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Fig. 1. Mean field (left) and emfs (right) from run ZY4 with B0

z = 0.1 and δB0 = 0.04. We also plot the best fits

corresponding to the turbulent resistivity model. We measure in this case ηT
xx = 5.6 × 10−2SL2

z .

model δB0 ηT
xx/(SL2

z) ηT
yx/(SL2

z) α ≡ νT /(SL2

z)

ZY1 0.01 3.6 × 10−2 2.9 × 10−2 1.5 × 10−1

ZY2 0.02 3.7 × 10−2 8.5 × 10−2 1.5 × 10−1

ZY3 0.03 3.6 × 10−2 6.8 × 10−2 1.5 × 10−1

ZY4 0.04 2.4 × 10−2 5.6 × 10−2 1.3 × 10−1

ZY5 0.08 1.1 × 10−2 1.1 × 10−2 7.8 × 10−2

Table 1. Main results from the Bz(y) configuration. α is the Shakura-Sunyaev like coefficient (see Lesur & Longaretti

2007 for a proper de?nition) computed from each run, and νT is the associated turbulent viscosity. Apart from runs ZY4

and ZY5, turbulence efficiency is constant and the turbulent Prandtl number appears to be systematically smaller than

1.

used in Lesur & Longaretti (2007). The Reynolds number is always Re = SL2

z/ν = 1600 and Pm = ν/η = 1.
Each simulation is integrated over 500 shear times, and the averages are computed from the 400 last shear
times, to avoid initial conditions artefacts.

To postprocess the results, we first compute the time average B̄ and Ē . We then use a script which extract
the mean current and compute the correlation with the emfs, giving in the end one component of the ηT tensor
for one run. Note that using this procedure, we can in theory compute the resistivity associated with Bz(y),
Bx(y) and Bx(z) configurations. In this paper, we will only explore the Bz(y) configuration. Similar results
follow in the other configurations, and will be reported elsewhere.

3 Results

To illustrate our method we consider the following structure for the mean magnetic field (radially varying
vertical field):

B̄z = B0

z + δB0 cos
(2πy

Ly

)

, (3.1)

We show on Fig. 1 an example of a simulation result with δB0 = 0.04. The profiles are computed from
an average in time and in the (x, y) plane. From this figure, one get a classical diagonal resitivity term of
ηT

xx ∼ 5.6× 10−2. We also find an non diagonal term ηT
yx = 8× 10−2. We have repeated this kind of experience

for various set of parameters, which are summarized on Tab. 1.
One may note a saturation process (models ZY4-ZY5), which may be due to the fact that increasing δB0

to high values leads to strong modification of the background field. Since B0

z corresponds to the maximum of
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the growth rate for the kz = 2π/Lz mode, this means that increasing δB0 always weakens the instability. This
explanation is confirmed by the decrease of the turbulent transport α.

According to Tab. 1, we can state that, on average

ηT
xx ∼ 0.2νT = 0.2αSL2

z. (3.2)

In a Bx(y) configuration (radially varying azimuthal field) one obtains instead ηT
zz ∼ 0.6νT = 0.6αSL2

z.

4 Conclusions

We have presented a systematic method to determine the turbulent resistivity associated with MRI turbulence
in accretion discs. We have exemplified this method in the configuration of a radially varying vertical magnetic
field, using nonlinear spectral simulations of turbulence. Although these results are rather preliminary, two
clear trends are noticeable. First, we find that the turbulent resistivity ηT is always smaller than the turbulent
viscosity νT . However, it is far from being negligible, and we may define a turbulent Prandtl number PmT =
ηT /νT , which is found to be of the order of 0.2—0.6. Second, we find that the turbulent resistivity is an
anisotropic tensor, as expected. In particular, the toroidal field (Bx) diffuses about 3 times more rapidly than
the poloidal field (Bz), in the radial direction. We also find that a non diagonal term of the turbulent resistivity
tensor is non zero. As shown by Lesur & Ogilvie (2008), such terms might play an important role for disc
dynamos and large scale magnetic field generation.

These results seem to suggest that the turbulent resistivity generated by the magneto-rotational instability
is about and order of magnitude too weak to allow for the existence of stationary accretion-ejection structure
although the anisotropy is in the right range, but further work is required to get a complete characterization of
the turbulent resistivity. In particular, one needs to quantify resistivity in the presence of a vertical structure
for the magnetic field. However, this configuration is not easy to compute as it excites very strong channel
solutions (Goodman & Xu 1994) which leads to unphysical results. To get a more precise scaling as a function
of α, one may try to vary the mean vertical field amplitude B0

z . Although our preliminary results seem to show
a good agreement with (3.2) for weaker fields, more work is required to get a complete picture. Finally, the
impact of the (molecular) Prandtl number, which is known to be strong on the transport efficiency (Lesur &
Longaretti 2007), is yet to be studied for the turbulent resistivity.
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