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CALCULATING MASS TRANSFER IN ECCENTRIC BINARIES USING THE BINARY
EVOLUTION CODE BINSTAR
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Abstract. We present calculations of mass transfer via Roche lobe overflow for a 1.50 + 1.40 M� main
sequence binary system with an eccentricity of 0.25 and orbital period of approximately 0.7 d using the
state-of-the-art binary evolution code BINSTAR. We consider the effect of eccentricity and an asynchronously
rotating donor star on the Roche lobe radius, and investigate their impact on the mass transfer rate.
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1 Introduction

Studies of interacting binaries typically assume that the orbit is circular and that the donor is rotating syn-
chronously with the orbit by the time Roche-lobe overflow (RLOF) commences, as a result of the short timescales
over which tidal forces act (Zahn 1977). However, such assumptions have been challenged by observations of
ellipsoidal variables with confirmed significant eccentricities (Nicholls & Wood 2012). Furthermore, Sepinsky
et al. (2007b, 2009) found that mass transfer via RLOF in eccentric binaries may act to increase the eccentricity
on a shorter timescale than the tidal circularization timescale which acts to decrease it.

In an accompanying paper, Sepinsky, Willems, & Kalogera (2007a) found that the Roche lobe radius for
a donor star, which is rotating super-synchronously compared with the orbital motion at periastron is smaller
than the radius calculated using the standard Eggleton (1983) prescription. These effects, of eccentricity and
asynchronism, directly affect the RLOF mass transfer rate, and have been modelled using the state-of-the-art
binary evolution code BINSTAR.

Here, we consider a 1.50+1.40 M� binary, with an eccentricity of 0.25, and an initial period Porb ≈ 0.7 d.
The impact of asynchronous rotation and eccentricity on the mass transfer rate are investigated, as well as the
response of the structure of the donor and accretor. In Sect. 2, we describe the BINSTAR code, and the key
input physics. Calculated mass transfer rates are presented in Sect. 3, while the reaction of the stars to mass
transfer is discussed in Sects. 4 and 5. A summary is given in Sect. 6.

2 Computational method

BINSTAR is designed for the evolution of low- and intermediate-mass binaries. It is an extension of the 1-
dimensional, single star evolution code STAREVOL (see Siess 2010, and references therein). Briefly, BINSTAR

simultaneously solves for the orbital eccentricity and separation, and the two stars. BINSTAR also handles semi-
convection, thermohaline mixing and diffusive overshooting and includes a nuclear network of 53 species (up to
37Cl). For further details of the binary input physics, see Siess et al. (2013).

2.1 The initial binary model

We consider a main sequence binary consisting of a donor star of mass Md = 1.50 M� with a gainer of mass
Mg = 1.40 M�, with radii Rd = 1.44 R� and Rg = 1.23 R� respectively. The stars have an age of approximately
1.3 Gyr and a metallicity of Z = 0.001, and we use a convection mixing length of αMLT = 1.71. We do not
consider convective overshooting. The binary has an eccentricity e = 0.25 and a semi-major axis a = 4.80 R�.
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Fig. 1. Left: Mass transfer rate as a function of time since apastron, where time is in units of the orbital period, and

the standard Roche formalism is used (Eq. 2.1). The dashed, vertical line indicates periastron. Right: Periastron mass

transfer rate during 9 consecutive orbits for the standard Roche formalism (red crosses), f = Ω/ωperi = 0.90 (green

triangles), f = 1.00 (blue squares) and f = 1.01 (magenta hexagons).

2.2 Roche lobe radius

For an eccentric binary in synchronous rotation where the separation between the two stars is D, the Roche
lobe radius of the donor star, RL1

, is

RL1
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
D, (2.1)

where q = Md/Mg and we have modified the expression for RL1 given by Eggleton (1983) by replacing a with
D. For brevity, we henceforth term this as the ‘standard Roche formalism’.

We also follow Sepinsky et al. (2007a) and calculate RL1
by taking into account the eccentricity of the orbit,

and any asynchronism of the donor star. The potential in this case (normalized to the gravitational potential
of the accretor), is given by

Ψ = − q

(x2 + y2 + z2)
1
2

− 1

[(x− 1)2 + y2 + z2]
1
2

− 1

2

f2(1 + e)4

(1 + e cos ν)3
(1 + q)(x2 + y2) + x, (2.2)

where the x-axis lies along the line joining the centers of mass of the two stars, in the direction from the
donor to the accretor, the z-axis is perpendicular to the plane of the orbit and is parallel to the spin angular
velocity vector of the donor, and the y-axis is perpendicular to the x- and z-axes, and completes a right-handed
coordinate set. All coordinates are given in units of D. We use a Monte-Carlo integration technique to calculate
RL1

from Eq. (2.2). In Eq. (2.2) f is the spin angular speed of the donor star in units of the orbital angular
speed at periastron, i.e.

f =
Ω

ωperi
. (2.3)

2.3 Calculating mass transfer rates

We consider a donor star of mass Md, radius Rd, effective temperature Teff,d, and with a mean molecular weight

and density at the photosphere, µph,d and ρph,d respectively. The mass transfer rate, Ṁd, in the case where
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material is removed from the optically thin region of the donor’s atmosphere (i.e. where the optical depth is
τ ≤ 2

3 ) is calculated using

− Ṁd = Ṁ0 exp

(
Rd −RL1

ĤP

)
, (2.4)

(Ritter 1988) where ĤP is the pressure scale height of the donor at the location of the inner Lagrangian point
L1, and Ṁ0 is the mass transfer rate if the donor star exactly fills its Roche lobe. Equation. (2.4) is only valid
if the donor star is slightly over- or under-filling its Roche lobe. If this is not the case, then mass is also lost
from the optically thick layers of the star (where τ ≥ 2/3). The mass transfer rate is therefore given by

− Ṁd = Ṁ0 + 2πF (q)
R3
L1

GMd

∫ Rph

RL1

Θ(Γ1)
Gm(Pρ)

1
2

r2
dr, (2.5)

(Kolb & Ritter 1990) where F (q) is determined from the area of the equipotential surface which intersects with
the L1 point. Also, P , T , µ and m are the pressure, temperature, mean molecular weight and the mass of
the donor star respectively at the radial coordinate r. Next, Θ(Γ1) is a function of the adiabatic exponent,
Γ1 = (dlnP/dlnρ)ad (see Kolb & Ritter 1991 for further details). The integral in Eq. (2.5) is evaluated
numerically from the L1 point to the photosphere (subscript ‘ph’).

3 Calculated mass transfer rates

The left panel of Fig. 1 shows that |Ṁd| rises as the stars approach periastron (dashed vertical line), reaching
about 10−4 M� yr−1 for the standard Roche formalism. This behaviour is due to the fact that RL1

decreases as
D decreases (Eq. 2.1) causing a corresponding rise in the amount that the star overfills its Roche lobe, Rd−RL1

,
and therefore in |Ṁd| (Eqs. 2.4 and 2.5). At periastron, Rd − RL1 is maximum. Away from periastron, RL1

and Rd −RL1 decline causing a drop in |Ṁd|.
The right panel of Fig. 1 shows that |Ṁd| at a given periastron passage increases as f is increased. Indeed,

|Ṁd| increases from approximately 7×10−5 M� yr−1 for the sub-synchronous (f = 0.90) case to about 4×10−4

M� yr−1 for the super-synchronous case (f = 1.01). If f is increased (causing a corresponding increase in the
centrifugal acceleration), then the location of L1 must be situated closer to the donor star so that a net zero-
acceleration is re-established. Since the Roche equipotential surface passes through the L1 point, an increasing
value of f means that both the volume and L1 will shrink.

4 Reaction of the donor

The inset in Fig. 2 shows that the donor’s surface luminosity, Ld, initially rises at the start of mass loss, due
to its small surface convection zone. Mass loss from this layer releases gravo-thermal energy causing Ld to
briefly increase. However, subsequent reaction is dominated by the extended radiative envelope of the donor.
The action of removing mass from the radiative layers absorbs gravo-thermal energy, causing them to be under-
luminous compared to an unperturbed star of the same mass. Hence, Ld decreases, and the energy deficit within
the surface layers causes them to contract (Fig. 2).

Once mass transfer shuts off, the donor radius, Rd and Ld rise again as energy flows from the donor’s interior
to fill the luminosity deficit in the outer surface layers as it restores thermal equilibrium. However, the donor
does not fully re-establish thermal equilibrium by the time mass transfer resumes at the next periastron passage;
the donor is still under-sized and under-luminous (main panel of Fig. 2). As Rd shrinks, Rd − RL1 becomes
smaller with each successive periastron passage, and the mass transfer rate during periastron will decrease with
time. This can be seen in the right panel of Fig. 1.

5 Reaction of the accretor

Towards periastron and in contrast to the donor star, the accretor’s surface convection zone continues to play a
role in response to mass addition. Mass accretion causes the gainer’s surface convection zone to grow in size (see
Davis, Siess, & Deschamps 2013, for details), and subsequent addition of mass to the convection zone absorbs
gravo-thermal energy. These layers become under-luminous (inset of Fig. 2) and as a result, they contract.

Beyond periastron, with the decline in |Ṁd|, the surface layers re-expand and the luminosity increases as
energy from the accretor’s interior flows outwards to the under-luminous layers. Once mass transfer shuts off,
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Fig. 2. Time evolution of the donor’s luminosity, Ld (left axis, solid black curve), and accretor’s luminosity, Lg (right

axis, dashed red curve), during mass transfer using the standard Roche formalism. The inset shows a close-up of the first

periastron passage. The shaded region gives the duration of mass loss, while the dotted vertical line indicates periastron.

the expansion of the surface layers continue. However, once the excess energy originally created by the accretion
phase has been radiated away, both the radius and surface luminosity start to slowly decrease.

6 Summary

We present the first calculations of mass transfer in an eccentric binary system using a detailed stellar and
binary evolution code, called BINSTAR. The evolution of the mass transfer rate has a Gaussian-like profile, with
mass transfer commencing (ending) just before (after) periastron, in agreement with recent smooth particle
hydrodynamical simulations (Lajoie & Sills 2011; Davis et al. 2013). The mass transfer rate is maximum at
periastron, and using the standard Eggleton (1983) formalism it peaks at about 10−4 M� yr−1. This is about a
factor of 3 smaller than the synchronous f = 1.00 case (which includes the effects of eccentricity), highlighting
the need to account for the non-circular nature of the orbit when determining the Roche lobe radius. During
mass transfer, the donor’s radius and luminosity decline due to its substantial radiative envelope. As a result
of the accretor’s growing surface convection zone during accretion, its radius and surface luminosity initially
shrink until periastron, after which they rise. Both stars do not fully re-establish thermal equilibrium by the
time mass transfer re-commences.

PJD acknowledges financial support from the Communauté Française de Belgique - Actions de recherche Concertées, from the
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