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Questions that could be answered 
using E-ELT observations

•  What is the gas and solid(ices) composition of the 
inner disk material (where the telluric planets 
form)?
• What kind of chemistry occurs there?

• What is the structure of the inner gas/dust disk?
• What is the interplay between disk accretion/

ejection/evolution?
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Water: one of the most interesting molecules

• How much water is in discs?

• What is the main reservoir of water in discs? Ice 
or vapour?

• Where is the cold/warm/hot water located? (core-
collapse planet formation theory requires icy 
grains to work efficiently)



The Snow/Ice line is located at the distance from the Sun 
where the dust T is low enough for water ice to condense

Td~100-150K

Icy grains stick more easily to each other than silicate 
grains: faster grain growth

5 -20 AU



Current state-of-the-art observations: water 
ice observed in edge-on disks with Subaru

• Water ice is the main ice component of 
grains outside the freeze-out zone: 
important for the coagulation of grains

• Absorption studies only possible for 
(almost) edge-on disks

• near-IR fluxes are lower than face-on disks

• A handful of cases with 8-m telescopes



Water ice

• Inner hot dust grains (and cold gas) act as “background” 
source against which the ices can absorb

Terada & Tokunaga 2012, ApJ 753, 19

(emission)



 Stetching & bending  
modes occur in both 
amorphous and 
crystalline solids

Lattice modes exist  
only in crystalline solids

Amorphous carbon,
Polycyclic Aromatic 
Hydrocarbons

Water ice



Example: HK TauB & HV Tau c edge-on disks
Terada et al.  2007,  ApJ 667,303



Ice spectroscopy gives an idea on the 
composition and origin of the ices

• Amorphous ice: remnant 
from envelope (unprocessed)

• Crystalline ice: the ice has 
been heated?

d216-0939 in M43



Pontoppidan et al. 2006



CO gas & ice in 
absorption

N(CO ice)/N(gas)~1

Thi et al. 2002, A&A 394, L27; Pontoppidan et al. 2005, ApJ 622, 463

CRBR 2422.8-3423

CO ice

VLT-ISAAC R=10,000, t=36 min, S/N~20 
(continuum)



Relations between disk and cometary ices

> 1 micron in disksISM



Ice observation in “face-on” disks: use of 
narrow band filters

• Narrow-band filter around 
the water ice feature

• HD 142527 with Subaru

Honda et al. 2009, ApJ, 690, 119

A
B

C



• less scattered-light in the 
narrow-band

• Advantage: 

• no need to have the disk seen 
edge-on

• can determine the size of the 
ice-emitting area and non-
axisymmetric emissions

• Disadvantage: no actual spectra 
are taken (narrow-band filters)

• With E-ELT, could we detect the 
ice line? IFU can give spatial and 
spectral information

star

3 locations



Nanodiamonds 
detected in two 
HerbigAe disks

• Polycyclic Aromatic 
Hydrocarbons (PAHs) 
seen in many disks 
around HerbigAe

• No PAHs detected from 
TTauri disks (not enough 
UV photons to excite 
them)

Guillois 1999,   ApJ 521, L133
lab nanodiamond spectrum



PAHs in disks illuminated by external OB stars 
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Vincente et al. 2013, 
ApJ 765, L38

PAHs in the evaporating disk



Spectro-astrometric technique

Wheelwright



Spectro-astrometric
observations

• Diamond emission is shifted 
compared to the continuum 
emission

• 50 mas “resolution”

Goto 2009,  ApJ 693, 610



Spatially-resolved spectra

• PAHs and 
Nanodiamonds do not 
have the same spatial 
variations

• Spatial information in 
one-direction only

• Need to detect the 
features in more objects!

(see also Habart et al. 2004)
Goto 2009,  ApJ 693, 610



CO ~ 4.5-5.0 micron

CO ro-vibrational lines

Thi et al. 2013

fundamental

100-1000K
10-100K



CO fundamental emission observed at high spectral- 
and spatial resolution

• probes the inner molecular disk (require high-spatial resolution: d=140 
pc, 0.01”=1.4 AU)

• profile constrains the gas kinematics of the inner disk:

• disk wind/jet

• funnel flow/accretion flow

• Keplerian rotation (emission from disk material)

• Precise interstellar composition: example carbon isotopic ratio 12C, 
13C, 16O, 17O, 18O



Determining Carbon and Oxygen isotopic ratios in the envelope 
around a young stellar object

Smith R. et al. 2010

VLT-CRIRES



R. Smith,  PhD thesis



Microjets from T 
Tauri stars

• PUEO @ CFHT

• FWHM 0.1” = 14AU



HL Tau microjet with Gemini

• [FeII] sensitive to depletion Takemi et al. 2007 (Gemini)



Blake & Boogert 2004

CO fundamental emission

Other groups: Pontoppidan, Salyk, Brittain, Goto, Carmona, 
Najita, Gibb...



Spectro-Astrometric 
(SA) observations

• CO rovibrational 
emission (~4.5-4.9 
micron)

• HD 141569A (~1E-4 
MSun disk)

• Subaru, spectrograph 
IRCS. R~20,000

Goto 2006, ApJ 652, 758

Keplerian rotation pattern



SA at the VLT with CRIRES

• Derive the size of the CO emitting area

Pontoppidan 2008, ApJ 684, 1323 ~1.5 mas “spatial resolution” (error bars)



Three vibrational modes of an isolated water 
molecule

9 degrees of freedom: few millions lines in the IR

2.74 microns

6.27 microns

2.66 microns



ProDiMo model ~30,000 lines

OI 63 micron

ALMA

OI, CI, CII, CO, 13CO, 
OH, H2O, HDO, H2, 
HD, S, Fe, Mg+, Si, 
SiO, CN, HCN, CS, 
NO, NH3, SiO, ArII, 

NeII, ...

CO, 13CO
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Models are now capable to “predict” hot 
water and CO line fluxes

• Model-prediction for a 
0.01 MSun disk 
(ProDiMo Woitke et al. 
2010, Kamp et al. 2011, 
Thi et al. 2011, 2013)

• Hot water lines 
dominate the near-IR 
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Salyk et al. 2008

Hot OH and H2O

Keck-NIRSPEC
dv=35 km/s



Spectro-Astrometric 
observation of water 

lines

• DR Tau, d=140 pc

• Keck R=25,000

• average emission profile 
and spectro-astrometric 
signature of 3 strong 
water 001-000 
vibrational lines 
(2.91869, 2.92782, 
3.01063 micron)

Brown L. R., 2013, ApJ 770, L14

AU



Other molecular emissions: careful knowledge of the atmosphere 
needed

Mandell 2012, ApJ 747, 92

H2O
OH

HCN
C2H2

atmospheric transmission



Summary

• Possible aims of disk chemical studies with the E-ELT (beyond 
current works with 8-m class telescopes):

• High spatial- and spectral-resolution observations of hot gas 
phase lines: derive kinematics (disk, wind, accretion flow, ...). With 
an Integral-Field-Unit, there is no need to perform multi-slit 
position astro-spectroscopic observations

• High sensitivity to detect (new) lines and weak solid-state 
features in a larger number of objects than possible so-far.

• CRIRES mag(M)=8, 1h, 5 sigma: F~1.5e-19 W/m2 (METIS 
planned ~100 times more sensitive).

• ELT allows to study fainter objects (disks around young Brown 
Dwarfs or exo-cometary emissions)





Bandheads

Fortrat diagram for CO v=2-0  ΔJ=
+1

Bandhead


