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HYDRODYNAMICAL SCALING LAWS TO STUDY TIDAL DYNAMICS
IN PLANETARY SYSTEMS
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Abstract. Tidal dissipation in stars and planets intrinsically depends on the nature of their tidal response,
which is directly linked to their internal structure and rheology. Indeed, solids and fluids do not behave
in the same way, the response of the second being highly resonant. This study, focused on viscous friction
acting on tidal waves, uses a local model to provide scaling laws allowing to better understand the physics of
dissipation in the fluid regions of celestial bodies. It shows how the nature and properties of low-frequency
tidal gravito-inertial waves change with fluid parameters such as viscosity, thermal diffusivity, rotation and
stratification. Besides, the scaling laws derived from the local model are applied to the tidal dynamics of a
two-body system that highlights the impact of the characteristics of dissipation.
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1 Introduction

Since the theoretical calculations carried out by Lord Kelvin (Kelvin 1863), who was the first to consider a tidally
deformed celestial body, tides have occupied a central place in the study of planetary systems. In this context,
gravitational tides have been studied mainly thanks to the developments made by Love and the corresponding
Love numbers (Love 1911). Then, Goldreich brought a major contribution in the 1960’s with the introduction
of the tidal quality factor Q, which is a general way to take into account tidal dissipation in celestial mechanics
(Goldreich & Soter 1966). This is of great importance since tides drive the secular orbital/spin evolution of
stars, planets and satellites by converting their mechanical kinetic energy into internal heating (Laskar et al.
2012; Bolmont et al. 2014).

However, the mechanisms driving tidal dissipation are not the same in solids and fluids. They depend on the
nature of the materials that compose a body and on the structure of this later. Studies dealing with the effects
of gravitational perturbations in rocky cores and planets (see for example Efroimsky & Lainey 2007; Efroimsky
2012; Remus et al. 2012b) show that the Q factor of these solid bodies varies regularly with the forcing frequency,
which obviously does not match with the case of fluid bodies. Indeed, numerous works published during the last
decades (Zahn 1966, 1975; Ogilvie & Lin 2004, 2007; Remus et al. 2012a, for stars and the envelopes of giant
planets) attest of the resonant response of fluid bodies to tidal perturbations, this behavior being synonym of
a strong dependence of the Q factor on the tidal frequency and of an erratic evolution of the orbital dynamics
(Auclair-Desrotour et al. 2014).

Such a behavior is explained by dissipation mechanisms, like the viscous friction, thermal diffusion and
Ohmic diffusion (in the presence of a magnetic field), acting on fluid tidal waves. This work focuses on viscous
friction within a low-frequency range and does not take into account magnetic aspects. So, high-frequency
acoustic waves are left aside, like Alfvén waves which propagate in magnetized fluid regions, and gravito-inertial
waves only remain. These laters predominate the tidal response of stars, the external envelope of giant planets
and the fluid layers of rocky planets and satellites like the Earth or Europa.
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Inertial waves are driven by rotation, gravity waves by stratification, and their restoring forces are the
Coriolis acceleration and the buoyancy respectively. Their characteristic frequencies are the so-called inertial
frequency 2Ω, Ω being the spin frequency of the body, and the Brunt-Väisälä frequency N corresponding to the
radial variations of the specific entropy. Gravito-inertial waves result from their coupling in stably stratified
rotating fluid regions. Thus, to study their complex dissipation by using a reduced local model appears as an
interesting way to explore its behavior over large domains of parameters (see also Ogilvie 2005; Jouve & Ogilvie
2014). Such studies are complementary of those carried out with complex global models.

The aim of the present work is to propose a method to investigate the dependence of tidal dissipation on the
fluid parameters. Using a fluid box in which rotation, stratification, viscosity and thermal diffusivity are taken
into account, scaling laws describing viscous friction on tidal waves are obtained (Auclair-Desrotour, Mathis,
Le Poncin-Lafitte in preparation for the complete derivation). Next, these scaling laws are used to illustrate,
through the concrete example of a planet-satellite system, how the quality factor Q and the evolution of orbital
dynamics are linked to the fluid parameters (see Auclair-Desrotour et al. 2014).
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Fig. 1. Left: The local analytical model: a Cartesian fluid section of a rotating fluid body A tidally excited by a

perturber B. The control parameters are the viscosity ν, thermal diffusivity κ and frequencies 2Ω and N of the fluid.

Right: A typical dissipation spectrum computed from the local model. ζ is the energy dissipated by viscous friction

per mass unit over a rotation period in the box; ω = χ/2Ω is the tidal frequency of the perturbation normalized by the

inertial frequency 2Ω; E = 2π2ν/
(
ΩL2

)
is the Ekman number and K = 2π2κ/

(
ΩL2

)
the normalized thermal diffusivity.

Here K = 0 and A = 0, which means that the waves are purely inertial and viscously damped (top left blue zone in

Fig. 2).

2 Hydrodynamical scaling laws

The model used here generalizes the first local model presented in Ogilvie & Lin (2004). Consider a local section
of a fluid region in a rotating star, planet or satellite tidally excited by a perturber. It is a rotating Cartesian
box of side length L inclined with respect to the spin axis of the body Ω by a colatidude θ (Fig. 1). The
coordinate z corresponds to the radial direction, x and y to the azimutal and latitudinal ones. In the box, the
fluid is supposed homogeneous of density ρ, kinetic viscosity ν and thermal diffusivity κ. Three dimensionless
control parameters are identified: A = (N/2Ω)

2
giving the nature of the waves (A� 1 for inertial waves, A� 1

for gravity ones), the so-called Ekman number E = 2π2ν/
(
ΩL2

)
weighting the terms of viscous diffusion with

respect to the Coriolis terms, and K = 2π2κ/
(
ΩL2

)
which is a equivalent of E for thermal diffusion. The

Prandlt number Pr = E/K compares the viscous and thermal diffusions (see Fig. 2).
Decomposing variables into Fourier series allows to compute an analytical expression for the energy ζ per

mass unit dissipated by viscous friction over a rotation period (T = 2π/Ω). This gives access to the properties
of the dissipation spectrum (Fig. 1), which has the shape of a batch of resonances located between ω− and
ω+ (see Gerkema & Shrira 2005, for their expression). Four different asymptotical behaviors are identified.
They are represented in Fig. 2 and illustrated by the corresponding spectra. Scaling laws for the viscous
friction are derived analytically in each regime for the positions ωmn, widths at mid-height lmn and heights
Hmn of resonances (m,n ∈ Z), the number of peaks Nkc, the height of the non-resonant background Hbg (that
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Fig. 2. Asymptotical behaviors of the tidal waves. Zones colored in blue and purple correspond to inertial waves, the

two other to gravity waves ; zones colored in blue and red correspond to the case where viscous diffusion predominates

over thermal diffusion, the two zones below corresponding to the opposite case.

corresponds to the so-called equilibrium tide) and the sharpness ratio Ξ = H11/Hbg of the spectrum. Ξ gives
the relative contrast between the resonances and the background (Table 1).

Table 1. Scaling laws for the properties of the energy viscously dissipated for the different regimes (we define A11 ≡
2 cos2 θ and Pr11 ≡ A/ (A+A11)). Top left: Inertial waves dominated by viscosity. Top right: Gravity waves

dominated by viscosity. Bottom left: Inertial waves dominated by heat diffusion. Bottom right: Gravity waves

dominated by heat diffusion. F is the amplitude of the forcing.

Domain A� A11 A� A11

Pr � Pr11

χmn

2Ω
∝

n
√
m2 + n2

cos θ Nkc ∝ E−1/2 χmn

2Ω
∝

m
√
m2 + n2

√
A Nkc ∝ A1/4E−1/2

lmn ∝ E Hmn ∝ F 2E−1 lmn ∝ E Hmn ∝ F 2E−1

Hbg ∝ F 2E Ξ ∝ E−2 Hbg ∝ F 2EA−1 Ξ ∝ AE−2

Pr � Pr11

χmn

2Ω
∝

n
√
m2 + n2

cos θ Nkc ∝ A−1/2K−1/2 χmn

2Ω
∝

m
√
m2 + n2

√
A Nkc ∝ A1/4K−1/2

lmn ∝ AK Hmn ∝ F 2A−2EK−2 lmn ∝ K Hmn ∝ F 2EK−2

Hbg ∝ F 2E Ξ ∝ A−2K−2 Hbg ∝ F 2EA−1 Ξ ∝ AK−2

3 Impact on tidal dynamics

As described above, the properties of the dissipation directly impact the long-term evolution of planetary
systems. This point is easily illustrated through the case of a two-bodies coplanar system, for example a
satellite orbiting circularly around a planet (e.g. the Mars-Phobos case studied by Efroimsky & Lainey 2007).
If we introduce in the dynamical equations a frequency-dependent tidal quality factor (e.g. Mathis & Le Poncin-
Lafitte 2009), which is proportional to the inverse of ζ in our local model, the semi-major axis a of the system
evolves erratically (Fig. 3). Instead of falling on the planet regularly with an increasing velocity as in the case
corresponding to Kaula’s constant Q model (Kaula 1964), the satellite only comes nearer to it, jumping from
a position to an other each times it meets a peak of resonance. Under some assumptions detailed in Auclair-
Desrotour et al. (2014), the amplitude of a jump ∆a can be written as a function of the frequency ωp, width at
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mid-height lp and sharpness ratio Ξp = Hp/Hbg of a peak,

∆a

a
≈ 2lp

3
√√

2− 1 (1 + ωp)

[√
Ξp − 1

] 1
2

. (3.1)

Each of these characteristics are now given explicitly as functions of the internal parameters of the fluid, A,
E and K thanks to scaling laws obtained in Table 1. For example, the variations of the width l11 and sharpness
Ξ of the main dissipation resonance with the Ekman number E are represented in Fig. 3.
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Fig. 3. Top left: A synthetical dissipation spectrum generated using the local model of the fluid box. D is proportional

to ζ. Bottom left: The corresponding evolution of the semi-major axis a of the fluid planet-satellite system (for details,

see Auclair-Desrotour et al. 2014). Top right: Width at mid-height of the main resonance of ζ as a function of the

Ekman number E = 2π2ν/
(
ΩL2

)
for different values of A = (N/2Ω)2. Bottom right: Sharpness of the main resonance

of ζ as a function of the Ekman number E for different values of A.

4 Conclusions

The properties of fluid tidal dissipation have a direct impact on the secular dynamics of planetary systems.
Indeed, dissipation resonances cause local rapid changes of orbital parameters, that are tightly related to the
widths and heights of the peaks. In this context, our local model provides scaling laws that describe the evolution
of the complex and resonant tidal dissipation as a function of fluid parameters. Moreover, It seems to be an
interesting qualitative tool to unravel the complex physics of dissipation. In a near future, our method could
be extended to magnetized fluid regions. It would allow to study Alfvén waves in addition to gravito-inertial
waves and to refine the map of the asymptotical behaviors (Fig. 2) with new regimes. This will contribute to
improve tidal dissipation modeling in studies of the dynamical evolution of planetary systems.
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