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SPIN-ORBIT ANGLE DISTRIBUTION
AND THE ORIGIN OF (MIS)ALIGNED HOT JUPITERS
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Abstract. The angle between the orbital plane and the stellar equator (called the spin-orbit angle) has
been measured for about 60 hot Jupiters, half of them showing significant misalignment. This challenges
scenarios of the formation of hot Jupiters. Recently, it has been proposed that misalignment could be a
consequence of the torquing of the proto-planetary disk by a transcient binary companion of the host star.

Here, we analyse the geometry of the problem, and compare the probability density function (PDF) of
the projected spin-orbit angle expected in various mechanisms, with the observed one. Scattering models
and the Kozai cycle with tidal friction models can not be solely responsible for the production of all hot
Jupiters. Conversely, the presently observed distribution of the spin-orbit angles is compatible with most hot
Jupiters having been transported by smooth migration inside a proto-planetary disk, itself possibly torqued
by a companion.
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1 Introduction

As stars spin, part of their surface moves towards us, while on the other side, the surface moves away from the
observer. As a consequence, half of a star is slightly blue-shifted and the other half red-shifted, which results
in a broadening of the spectral lines. When an exoplanet transits in front of its star, it blocks successively the
light coming from regions with a different redshift. This results in a signal in the radial velocity measurement
of the star, called the Rossiter - Mac Laughlin effect (Mac Laughlin 1924). Using this, one can infer the angle
between the stellar spin axis and the trajectory of the planet, projected on the plane of the sky (e.g., Winn
et al. 2007; Triaud et al. 2010). This angle is called the “spin-orbit angle”, generally noted β or λ.

The 61 measurments known to date are binned in the histogram shown on Figure 1. They all concern
hot Jupiters, giant planets with short periods, for which the measure is easier. While 34 are measured to be
smaller than 20◦, that is compatible with perfect alignement of the orbital plane and the equatorial plane of
the star, half of them show misalignement, and even retrograde orbits (β > 90◦). This questions the origin
of these planets. While most researchers consider that in situ formation of hot giant planets is very unlikely,
two kinds of mechanisms have been invoked to move a giant planet close to its parent star : (i) early, smooth
migration in the plane of the gaseous proto-planetary disk (Lin & Papaloizou 1986; Crida & Morbidelli 2007),
(ii) late, more violent orbital change due to planet-planet scattering, Kozai resonance with a companion, or
tidal interaction with the central star and combinations of these processes (e.g. Rasio & Ford 1996; Ford &
Rasio 2008; Fabrycky & Tremaine 2007; Naoz et al. 2011). In case (ii), a change of the orbital plane is likely,
causing spin-orbit mislignment. In case (i), the orbital plane stays in the proto-planetary disk plane, supposedly
equal to the stellar equatorial plane ; however, (Batygin 2012) has shown that the proto-planetary disk could
precess around the axis of a transcient stellar companion, so that smooth migration is not incompatible with
spin-orbit misalignment. In Crida & Batygin (2014), we analyse the distribution of the spin-axis angle, with
a careful analysis of projection effects, and compare it with the distribution expected for various mechanisms.
These results are briefly presented here, where section 2 explains how to link the real spin-orbit angle to the
projected one on the plane of the sky, and section 3 compares observations with a few mechanisms available in
the litterature.
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Fig. 1. Grey-shaded histogram : observed projected spin-orbit angle β (taken as |β| or |λ| in the data from

exoplanets.org). Left : red thin line : distribution of Ψ, given by Eq. (3.1) ; blue thick line : corresponding PDF

of β. Right : red line with + symbols labelled F.T. 2007 : distribution of β expected in the Fabrycky & Tremaine (2007)

mechanism of Kozai cycles with tidal friction (their Fig. 10b providing Ψ in bins of 10◦) ; blue line with stars labelled

N.I.B.2008 : distribution found by Nagasawa et al. (2008) in their model of planet-planet scattering, tidal circularisa-

tion, and Kozai mechanism (their fig. 11c) ; green line with circles labelled B.N.2012 : example of distribution found by

Beaugé & Nesvorný (2012) in their model of multi-planet scattering (their fig. 16). All the distributions of β have been

normalised to have 18 cases with β > 40◦, for an easier comparison.

2 The 3D geometry of the spin-orbit angle and projection effects

The true misalignment angle is actually the angle between two vectors in 3D space : ~Lp, the orbital angular

momentum of the planet, and ~Ls, the angular momentum of the spin of the star. As such, it can only lie
between 0 and 180 degrees (there are no negative angles in 3D). This real, 3D angle is denoted below as Ψ. For
a fixed Ψ, which β will be observed ? What is the probability density function (PDF) of β ?

On Figure 2, the yellow sphere is the unit sphere, centred on the star O, and the vertical axis is ~Lp. The

stellar spin axis ~Ls points towards S, whose colatitude is Ψ by definition, and longitude (azimuth) φS , unkonwn.
The top left panel is the circle gathering all the points of colatitude Ψ, so that A′A = A′S = A′R = sin Ψ and
A′S′ = sin Ψ | sinφs|.

In the projected plane (shown in bottom left of Fig. 2), the angle between the north pole of the orbit and the

spin of the star appears to be β = ̂A′OS′. One can see that tanβ = A′S′/OA′, where OA′ = cos Ψ is negative
when Ψ > π/2. Finally,

β = arctan (| sinφs| tan Ψ) ≡ G(φs) (2.1)

As the distribution of φs is uniform in the interval [0; 2π[, and | sin(x)| = | sin(π − x)| = | sin(π + x)| =
| sin(2π − x)|, it is sufficient to consider a uniform distribution for 0 6 φs < π/2, with probability density
2/π. In this case, β is a monotonic function of φs. It is well known that if X is a random variable of
probability density function fX , and Y = G(X) with G a monotonic function, then the PDF of Y is fY (y) =

fX
(
G−1(y)

)
×
∣∣∣(G−1

)′∣∣∣ (y) . Thus, using Eq. (2.1) for fixed Ψ, the PDF of β is :

f(β|Ψ) =


2

π

1 + tan2 β

(tan2 Ψ− tan2 β)1/2
if β ∈ T = {0 ≤ β < Ψ < π

2 } ∪ {
π
2 < Ψ < β ≤ π} ,

0 otherwise

(2.2)

One can check analytically that
∫ π

0
f(β|Ψ) dβ = 1 for all Ψ. If now Ψ has its own PDF w(Ψ) (such that∫ π

0
w(Ψ) dΨ = 1 ), the corresponding PDF of β will be :

f(β) =

∫ Ψ=π

Ψ=0

f(β|Ψ)w(Ψ) dΨ . (2.3)
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Fig. 2. Right : 3D representation of the problem. The yellow sphere is the unit sphere centred on the star. P marks

the direction of the orbital angular momentum vector ~Lp and S that of the stellar spin ~Ls. The dashed circle passing

through points A and S gathers all the points making an angle Ψ with P. It is represented in the top left.

Top left : The circle of the unit sphere gathering all the points at colatitude Ψ with respect to the orbital angular

momentum vector of the planet. A is the point facing the observer ; S is the point corresponding to the direction of the

stellar spin. A and S are projected on the diameter of this circle perpendicular to the line of sight onto A’ and S’ ; φs is

then ÂA′S.

Bottom left : The projected plane, as seen by the observer. The previous dashed circle is now a dashed horizontal line,

on which A’ and S’ are the projections of A and S along the direction of the line of sight. The arc PR defines an angle

Ψ, while the projected spin orbit angle β is ̂A′OS′, marked in red.

3 Application to proposed mechanisms

3.1 Disk torquing

A simple description of the disk torquing model by Batygin (2012) is the following : the angle between the
stellar equatorial plane and the orbital plane of the companion star is i′, randomly distributed in 3D, that is
between 0 and π/2 with a PDF sin(i′). Then, the disk precesses around this axis, while the star is unperturbed.
As a consquence, Ψ oscillates periodically between 0 and 2i′. When the companion star leaves, Ψ is fixed, at
any value in this interval. This gives to the spin-orbit angle the PDF :

w(Ψ) =
1

2
[Si(π/2)− Si(Ψ/2)] , where Si(x) =

∫ x

0

sin t

t
dt . (3.1)

This function is represented as the thin, almost straight, red line in the left panel of Figure 1. The blue, thick,
curved line represents the corresponding PDF of β, as given by Eqs (2.3) and (3.1). The difference between
the two curves enlightens the necessity of taking into account the projection effects. The blue curve is in good
qualitative agreement with the observed distribution. In fact, the only difference with the observations lies in
an underestimation of the proportion of aligned cases. But this shouldn’t be a problem : not all stars have a
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transcient companion during their formation, that perturbs their proto-planetary disk. The excess of aligned
cases may simply reflect the fact that in a few systems, the proto-planetary disk have never left the equatorial
plane of the star.

To check this, we have performed Monte-Carlo simulations of disk torquing, taking into account the magnetic
coupling between the star and the disk (Batygin & Adams 2013), and with random orbital parameters for the
binary. We find that the distribution beyond β > 40◦ is extremely robust. On the other hand, the fraction of
aligned systems strongly depends on the distribution of the maximum semi-major axis of the binaries, namely
it increases when wider binaries are considered.

3.2 Other mechanisms

The left panel of Figure 1 shows the distribution of β that would be given by a few mechanisms found in the
litterature (see caption). In all three cases, we have taken the PDF of Ψ provided in the paper, and transformed
it into a distribution of β using our Eq. (2.3), in order to compare with the observations (histogram in the
background). The distributions have been normalized to have 18 cases with β > 40◦, like in the observations.

We see that all of them reproduce satisfactorily the almost flat distribution of β beyond 60◦, but all fail at
reproducing the observed distribution at β < 40◦. In particular, one sees a significant lack of aligned systems.
Hence, none of these mechanisms can be responsible for the production of most hot Jupiters.

4 Summary

1. The real spin-orbit angle Ψ, is a 3D angle and so lies between 0 and 180◦. The projected spin-orbit angle
β is in the plane of the sky, but its direction (clockwise or counterclockwise) only depends on whether
we see the ascending or descending node, and cannot be determined by observations. Reporting negative
angles doesn’t make sense.

2. We provide an easy way to connect the distributions of the real and projected spin-orbit angles distributions
(Eqs (2.2) and (2.3) ). Any model pretending to explain the spin-orbit misalignments should be tested
against the observed distribution, using this link.

3. About half of the hot Jupiters are well aligned ; this can not be explained by the Kozäı Cycles with
Tidal Friction or scattering models. Thus, at least a third of the hot Jupiters must have been formed by
standard type II migration in an aligned disk.

4. Type II migration in a torqued disk also leads to the production of misaligned hot Jupiters, and our
analytical model and monte-carlo simulations show that the expected distribution of β in this case is in
very good agreement with the observations.

In the end, based solely on the distribution of the observed projected spin-orbit angle, it seems that type II
migration could be the dominant mechanism of formation of hot Jupiters, misaligned or not.
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