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TIDAL FRICTION IN ROTATING TURBULENT CONVECTIVE
STELLAR AND PLANETARY REGIONS
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Abstract. Turbulent friction in stellar and planetary convection zones is one of the key physical mechanisms
that drive the dissipation of the kinetic energy of tidal flows in stars and planets hosting companions. This
friction acting both on the equilibrium tide and on tidal inertial waves thus deeply impacts the dynamics
of the spin of the host star/planet and the orbital architecture of the surrounding system. It is thus very
important to obtain robust prescription for this friction. In the current state-of-the-art, it is modeled by a
turbulent viscosity coefficient using mixing-length theory. However, none of the existing prescriptions take
into account the action of the possibly rapid rotation that strongly affects convective flows. In this work,
we propose such a new prescription that takes into account rotation and discuss the possible implication for
tidal dissipation in rotating stars and planets.
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1 Introduction and context

Tidal friction is one of the mechanisms that drive the evolution of planetary systems (e.g. Hut 1981; Laskar et al.
2012; Mathis & Remus 2013; Ogilvie 2014). In this context, tidal friction in the turbulent convective envelopes
of low-mass stars and giant planets and the cores of telluric planets must be carefully evaluated. In the present
state-of-the-art, the turbulent friction acting on tidal flows in these regions (e.g. Ogilvie & Lin 2004, 2007; Remus
et al. 2012) is modeled thanks to an effective turbulent viscosity coefficient (Zahn 1966). This corresponds to
the assumptions that it can be described through a viscous force while we have a scale-separation between tidal
and turbulent convective flows. The properties of the turbulent viscosity thus described the effective efficiency
of the couplings between turbulence and tidal flows. Therefore, it depends on the frequency of the forcing as
well as on the dynamical parameters that impact stellar and planetary convection (Zahn 1966; Goldreich &
Keeley 1977; Goodman & Oh 1997; Penev et al. 2007; Ogilvie & Lesur 2012).

Among them, rotation is one of the parameters that must be taken into account. Indeed, the Coriolis
acceleration strongly affects the dynamics of turbulent convective flows (e.g. Brown et al. 2008; Julien et al.
2012; Barker et al. 2014). Therefore, it is absolutely necessary to get a robust prescription for the turbulent
friction applied on tidal waves by rotating convection in stars and planets as a function of their angular velocity
that evolves during their evolution. To reach this objective, properties of rotating turbulent flows such as their
characteristic velocities and length scales must be known if we wish to model this friction using the mixing-
length framework (Zahn 1966). In this context, the work by Stevenson (1979) is particularly interesting since
they are derived in the asymptotic regimes of slow and rapid rotation. Moreover, these asymptotic scaling laws
have been now confirmed by Barker et al. (2014) using high-resolution non-linear 3-D Cartesian simulations of
turbulent convection. In this work, we thus propose a new prescription for tidal friction in rotating turbulent
convective regions that takes rotation into account using the results obtained by Stevenson (1979) and Barker
et al. (2014).
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2 Prescription for the friction in rotating turbulent convective layers

2.1 State of the art

The first study of the friction applied by turbulent convection on tidal flows was achieved by Zahn (1966) in
the case of stars (see also Zahn 1989). In his work, he examined the coupling between turbulence and the
large-scale equilibrium tide induced by the hydrostatic adjustment of the star due to the tidal perturber (e.g.
Remus et al. 2012). His approach was based on three main assumptions. First, he assumed that the friction
applied by turbulence can be described thanks to a viscous force involving an eddy-viscosity νT. Second, he
assumed a scale-separation between tidal and turbulent convective flows. Finally, the characteristic velocity and
length scale of turbulent convection, respectively Vc and Lc, were described using the mixing-length theory. In
this framework, he proposed the following prescription for the eddy-viscosity:

νT;NR =
1

3
VcLc f

(
Ptide

Tc

)
. (2.1)

In this expression, NR stands for Non-Rotating convection and f is a function that describes the loss of efficiency
of tidal friction in the case of rapid tide when Ptide<<Tc, Ptide and Tc being respectively the tidal period and
the characteristic convective turn-over time (see Zahn 1966; Goldreich & Keeley 1977; Goodman & Oh 1997;
Penev et al. 2007; Ogilvie & Lesur 2012, for detailed discussions of f).

However, as pointed above (rapid) rotation strongly affects turbulent convective flows (e.g. Chandrasekhar
1953; Brown et al. 2008; Julien et al. 2012; Barker et al. 2014). Therefore, Vc, Lc, and as a consequence νT,
vary with rotation. In the present state-of-the-art, we are thus in a situation where the action of the Coriolis
acceleration is taken into account in the physical description of tidal flows (e.g. Ogilvie & Lin 2004, 2007; Remus
et al. 2012) while it is ignored in the one of the turbulent friction while the angular velocity of celestial bodies
varies along their evolution (e.g. Gallet & Bouvier 2013, for solar-type stars).

2.2 Modelling and assumptions

To study the modification of the turbulent friction applied on tidal flows in rotating stellar and planetary
convective regions, we use theoretical results first derived by Stevenson (1979) and confirmed by high-resolution
numerical simulations computed by Barker et al. (2014) in Cartesian geometry. We thus choose to consider
a local Cartesian set-up with a box centered around a point M in a rotating convective zone (see fig. 1);
(M,x, y, z) is the associated reference frame. We introduce the angular velocity Ω of the studied body. The
box has a characteristic length L and is assumed to have an homogeneous density ρ. Its vertical axis is inclined
with an angle θ with respect to the rotation axis.

Fig. 1. The local Cartesian model. The spin ~Ω is represented by the red arrow and the gravity ~g by the blue one.

Next, we introduce the control parameters of the system:

• the convective Rossby number defined as in Stevenson (1979)

Rc
o =

(
Vc (Ω = 0)

Lc (Ω = 0) 2Ω| cos θ|

)
=

TΩ

Tc (Ω = 0)
, (2.2)
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where we introduce the characteristic convective turn-over time Tc =
Lc

Vc
and the dynamical one TΩ =

1

2Ω
;

Rc
o<<1 and Rc

o>>1 correspond to rapid and slow rotation regimes respectively;

• the Ekman number

E =
2π2νT

ΩL2
, (2.3)

which compares the respective strength of the viscous force and of the Coriolis acceleration.

2.3 The new eddy-viscosity prescription

As in previous works, which do not take into account the action of rotation on convection (see sec. 2.1), we
assume i) that the turbulent friction on tidal velocities can be modeled through a viscous force involving an
eddy-viscosity coefficient and ii) a scale-separation between turbulent convective and tidal flows.

To derive this coefficient as a function of rotation, we have to know the variation of Vc and lc as a function of
Ω and to verify that the mixing-length approach, which is generally used in stellar and planetary models, can be
assumed in our context. In this framework, this is the great interest of the work by Barker et al. (2014). They
demonstrated that scaling laws obtained by Stevenson (1979) for Vc and Lc as a function of Rc

o using such a
mixing-length formalism is robust and verified when computing high-resolution Cartesian numerical simulations
of rotating turbulent convective flows in a set-up corresponding to the one studied here for θ ≈ 0.

We can thus generalize the prescription proposed in eq. (2.1) to the rotating case by writing∗

νT;RC =
1

3
Vc (Rc

o)Lc (Rc
o) f

(
Ptide

Tc

)
, (2.4)

where RC stands for Rotating Convection. To get Vc (Rc
o) /Vc (Ω = 0) and Lc (Rc

o) /Lc (Ω = 0)†, we use the
scaling laws that have been derived by Stevenson (1979) and verified by Barker et al. (2014):

• in the slow rotation regime (Rc
o>>1), we have

Vc (Rc
o)

Vc (Ω = 0)
≈

(
1− 1

242 (Rc
o)

2

)
and

Lc (Rc
o)

Lc (Ω = 0)
≈

(
1 +

1

82 (Rc
o)

2

)−1

; (2.5)

• in the rapid rotation regime (Rc
o<<1), we have

Vc (Rc
o)

Vc (Ω = 0)
≈ 1.5(Rc

o)1/5 and
Lc (Rc

o)

Lc (Ω = 0)
≈ 2(Rc

o)3/5. (2.6)

We also define a first Ekman number computed with the turbulent viscosity prescription where the modification
of turbulent friction by rotation is ignored (ENR) or taken into account (ERC), i.e.

ENR =
2π2νT;NR

ΩL2
and ERC =

2π2νT;RC

ΩL2
. (2.7)

In fig. 2, we plot νT;RC/νT;NR and the corresponding ratio for the Ekman number ERC/ENR as a function of
Rc

o.
The small-dashed green and continuous blue lines correspond to the slow- and rapid-rotation asymptotic

regimes respectively (the red long-dashed line corresponding to the non-rotating case). In the regime of rapidly
rotating convective flows (Rc

o<<1), the turbulent friction decreases by several orders of magnitude with a scaling

νT;RC/νT;NR ∝ (Rc
o)

4/5 ∝ Ω−4/5. It can be understood coming back on the action of (rapid) rotation on the
convective instability and turbulence. The Coriolis acceleration tends to stabilize the flow and thus the degree
of turbulence decreases with increasing rotation as well as the corresponding eddy-viscosity.

∗It must be pointed that the isotropic eddy-viscosity must be considered as a qualitative quantity because rapid rotation leads
to strongly anisotropic turbulent flows (e.g. Julien et al. 2012).
†As Stevenson (1979), we define Lc as the smallest length-scale characterizing the dominant convective mode with a wave vector

kc.
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Fig. 2. The ratio νT;RC/νT;NR (and ERC/ENR) as a function of Rc
o. The small-dashed green and continuous blue lines

correspond to the slow- and rapid-rotation asymptotic regimes respectively. The red long-dashed line corresponds to the

non-rotating case.

3 Consequences for the linear tidal dissipation

The linear response of planetary and stellar convection zones to tidal perturbations is constituted by the su-
perposition of a non-wave like displacement, the equilibrium tide, and of tidally excited inertial waves, the
dynamical tide. The restoring force of inertial waves is the Coriolis acceleration. Because of their dispersion re-
lation χ = 2Ω kz/|~k|, where χ is their frequency and ~k their wave number, they propagate only if χ ∈ [−2Ω, 2Ω].
To understand the impact of rapid rotation on the turbulent friction derived in the previous section on both
the equilibrium and dynamical tides, we now consider the linear response of the Cartesian set-up studied here
(cf. fig. 1) to a periodic forcing. We follow the local analytical approach, which has been introduced by Ogilvie
& Lin (2004) and Auclair-Desrotour et al. (2014b) to understand tidal dissipation in convective regions, with

taking into account here the inclination angle θ between the spin (~Ω) and the gravity (~g) at M (see fig. 1).
Because of the form of the forced velocity field, the tidal dissipation spectrum and the corresponding energy

dissipated per rotation period (ζ) is a complex resonant function of the normalized tidal frequency (ω ≡ χ/2Ω).
It corresponds to resonances of the inertial waves that propagate in planetary and stellar convection zones.
An example of such resonant spectra is represented in fig. 3 (left panel) for E = 10−4 and θ = 0. Following
Auclair-Desrotour et al. (2014b), we characterize ζ by the following characteristics:

• the non-resonant background of the dissipation spectra Hbg; it scales as Hbg ∝ E;

• the number of resonant peaks Nkc; it scales as Nkc ∝ E−1/2;

• their width at half-height lmn; it scales as lmn ∝ E;

• their height Hmn; it scales as Hmn ∝ E−1;

• the sharpness of the spectrum defined as Ξ = H11/Hbg; it scales as Ξ ∝ E−2.

From now on, XRC is a quantity evaluated with ERC (i.e. with νT;RC) while XNR is computed using ENR (i.e.
with νT;NR).

We can thus deduce interesting conclusions from obtained results both on the equilibrium and dynamical
tides.

• The equilibrium tide: in our local Cartesian set-up, it is represented by the non-resonant background Hbg.
Using Eq. (2.7), we thus deduce that its efficiency scales as Ω−9/5 in the regime of rapid rotation. This
loss of efficiency of the equilibrium tide in rapidly rotating convective regions is illustrated in fig. 3 where
we plotted the ratio Hbg;RC/Hbg;NR as a function of Rc

o.

• The dynamical tide: we use scaling laws obtained for the resonances of tidal inertial waves. We deduce
that as soon as studied convective regions are in the regime of rapid rotation, their number and height
respectively increase as Nkc ∝ Ω9/10 and Hmn ∝ Ω9/5 while their width decreases as lmn ∝ Ω−9/5. The
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Fig. 3. Left: the complex variation of tidal dissipation in convective layers as a function of the normalized tidal frequency

ω ≡ χ/2Ω for E = 10−4 and θ = 0. Right: variation of Hbg;RC/Hbg;NR, lRC/lNR, Nkc;RC/Nkc;NR, and ΞRC/ΞNR as a

function of Rc
o in logarithmic scales.

sharpness of ζ is increased as Ξ ∝ Ω18/5. This variation of the properties of the resonant tidal dissipation
spectra is illustrated in fig. 3 (right panel) where we plot the ratios Nkc;RC/Nkc;NR, lRC/lNR, and ΞRC/ΞNR

as a function of Rc
o. As demonstrated by Auclair-Desrotour et al. (2014a), this has important consequences

for the evolution of the spin of the body and of the orbits of the companions. For example, the relative
migration induced by a resonance scales as ∆a/a ≡ lmn Ξ1/4 ∝ Ω−9/10.

4 Conclusions

Thanks to the results obtained by Barker et al. (2014) on the scalings of velocities and length scales in rotating
turbulent convection zones, we proposed a new prescription for the eddy-viscosity coefficient that allows to
describe the linear tidal friction in such regions as a function of the convective Rossby number (Rc

o). In their
work, Barker et al. (2014) indeed confirmed scalings as a function of rotation that have been first derived
by Stevenson (1979) using mixing-length theory. Using these results, we straightforwardly derived our new
prescription for the turbulent friction that depends on rotation and that generalizes previous studies where its
action was ignored. We then demonstrated that the eddy-viscosity is decreased by several orders of magnitude in
the rapidly rotating regime that leads to a deep modification of the tidal dissipation spectrum. As demonstrated
by Auclair-Desrotour et al. (2014a), it must be taken into account in the simulation of the dynamical evolution
of planetary systems. Indeed, the angular velocity of their components vary along their evolution because of
applied tidal (and electromagnetic) torques that are themselves function of the rotation rate. In a forthcoming
work, we will apply our new prescription to the evolution of star-planet and planet-moon systems and of multiple
stars. Direct non-linear interactions and couplings between tidal waves and turbulent convection will also be
examined.
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