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Abstract. Nowadays, General Relativity (GR) is very well tested within the Solar System using observables
given by the tracking of spacecraft (Bertotti et al. 2003), Very Long Baseline Interferometry (Lambert &
Le Poncin-Lafitte 2009, 2011) and Lunar Laser Ranging -LLR- (Merkowitz 2010). These tests are mainly
based on two frameworks: the Parametrized Post Newtonian (PPN) and the search for a fifth force. However
other frameworks are available and can be used to look for deviations from GR. In this context, we present
the ongoing work concerning LLR performed at POLAC (Paris Observatory Lunar Analysis Center) in
SYRTE, Paris Observatory. We focus on a new generation of software that simulates the observable (the
round trip time of photons) from a given space-time metric (Hees et al. 2012). This flexible approach allows
to perform simulations in any alternative metric theories of gravity. The output of these software provides
templates of anomalous residuals that should show up in real data if the underlying theory of gravity is not
GR. Those templates can be used to give a rough estimation of the constraints on the additional parameters
involved in the alternative theory. To succeed, we are building a numerical lunar ephemeris which integrates
the differential equations governing the orbital and rotational motion of bodies in the Solar System. In
addition, we integrate the difference between the Terrestrial Time (TT) and the Barycentric Dynamical
Time (TDB) to make the ephemeris self-consistent. Special attention is paid to the computation of partial
derivatives since they are integrated numerically from the variational equations.
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1 Context

Since 1969 LLR is one of the best tool to constrain GR. However these constraints are generally computed
within two frameworks : PPN formalism (Will 1993) and the fifth force framework (Fischbach & Talmadge
1999). Therefore, parameters involved in these two formalism, are very well estimated and point towards GR.
For instance, the solution of Williams et al. (2004) yields a numerical test of the equivalence principle with
LLR comparable with the present laboratory limit at one part over 1013. It also improved constraints on the
strong equivalence principle parameter η (=0 in GR), PPN parameter of non linearity β (=1 in GR), geodetic
precession effect and Ġ/G. Soffel et al. (2008) consider a potential test of the gravitomagnetism effect and the
link with the preferred frame parameter α1 (=0 in GR) appearing in the usual PPN framework. Finally, for the
search of a fifth force Müller et al. (2005) performed LLR analysis of the inverse square law by fitting Yukawa
perturbation terms.

Most of the time, tests realised in the PPN formalism, are performed in fully-conservative metric theories.
However looking for deviations from GR in semi-conservatives, non-conservatives metric theories or even in
other phenomenological frameworks like SME (Colladay & Kostelecký 1997, 1998) could be very interesting.
Indeed many alternative theories to GR predict for instance a violation of the Lorentz symmetry at different
levels. In this attempt, we are building a new numerical lunar ephemeris computed in alternative frameworks
to GR and which will be fit on LLR data.
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2 Main effects

Considering the high accuracy of the LLR data, we have to model all the dynamical effects with theoretical
signal larger than 1 cm over the Earth-Moon distance. The most important are (i) the point-mass interactions,
(ii) figure potential, (iii) tides and spin deformations of (iv) anelastic bodies and (v) lunar librations.

(i) The numerical integration of the positions of point-mass bodies is done in the International Celestial
Reference System (ICRS). We use the post-Newtonian Eistein-Infeld-Hoffmann (EIH) equations of motion
in PPN framework, see e.g. Klioner & Soffel (2000). The difference between TT and TDB is also integrated.

(ii) The Moon, the Sun and the Earth are not considered as point-mass bodies. We use spherical harmonics
to describe their figure potential. We expand the Earth potential up to degree 4 in zonal harmonic, up to
degree 4 in zonal, sectoral and tesseral harmonic for the Moon and only the 2nd degree in zonal harmonic
is considered for the Sun.

(iii) We take into account distortions (due to tides and spin variation) raised upon the Earth and the Moon
since they are closed to each other. These distortions induce variations in 2nd degree harmonic of the two
extended bodies. Subsequently, the impact on the orbital motion of point-mass body is computed with
the figure potential formalism described in (ii).

(iv) Distortions are evaluated considering anelastic bodies. Since anelastic bodies don’t react immediately to
a perturbation, there is a time delay in their reaction because of the dissipation inside them. To consider
this dissipation for tides, we introduce a phase lag between the position of a tide raising body and the
direction of the tidal bulge. For the spin velocity vector, we consider dissipation by computing the angular
velocity vector at time t minus time delay.

(v) We orientate the Moon in ICRS thanks to the three Euler’s angles (φ, θ, ψ). Their evolution in time
is given by Euler’s equation of motion which relates the change in Moon angular velocity vector with
the Moon total moment inertia tensor and its time derivative. Torques acting on the Moon come from
different contributions: (a) interactions of point-mass bodies with the non-spheric potential of the Moon;
(b) interaction between the figure of the Earth and the one of the Moon. (c) geodetic precession effect.

3 Partials derivatives

One of the most important specificity of our approach compared to others numerical ephemeris, is the compu-
tation of partials from variational equations. In the least squares procedure partials represent the link between
the computed and the observed values. We choose to integrate them at the same time than the equations of
motion with the ODEX integrator (Hairer et al. 1993). In the standard least squares fit applied to LLR, the new
parameters vector x is determined from the initial parameters vector x0 as well as the range measured and the
range numerically integrated f(x0). We also need f ′(x0) the partial derivative matrix, computed from the vari-
ational equations. It depends on initial values of the solution vector : x0 = T(ρi1, · · · , ρin, ζi; ρ̇i1, · · · , ρ̇in, ζ̇i; pl),
where i = 1, · · · , 3; l = 1, · · · ,m; p being the physical parameters vector, ρA the position vector of body A, ρ̇A
the velocity vector of body A, ζ the three Euler’s angles and ζ̇ their time derivatives. Then, for i = 1, · · · , 3,
A = 1, · · · , n and j = 1, · · · , 6(n+1)+m, we integrate the 3n[6(n+1)+m] following equations :
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where αA = ρ̈A(x0) is the absolute acceleration vector of body A. We obtain a similar expression for dζi/dxj0
where αA is replaced by ζ̈ the acceleration over the three Euler angles. Partial derivatives in the second
member are computed analytically and directly implemented into the software. The numerical integration of
the dρiA/dx

j
0 quantities let to compute the partial derivatives matrix f ′(x0). Using this semi-numerical method,

we integrate partials at the same time than the equations of motion unlike a purely numerical method.
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4 Comparison with INPOP13c

We present a comparison between our numerical solution and INPOP13c (Fienga et al. 2014). Currently, the
two dynamical modelling are closed to each other except three main differences: (a) into our numerical solution,
the Earth orientation is forced with the IAU-routines of SOFA (Wallace 1998), whereas it is integrated into
INPOP13c; (b) we consider the perturbation upon the Earth-Moon vector of the 70 biggest asteroids, while the
effect of 300 is computed into INPOP13c; (c) INPOP13c takes into account a flat ring in order to model the
remaining asteroids of the main belt, which is not present in our software.

In Fig. 1, 2 and 3 we compare the two dynamical modelling by taking initial conditions (positions and
velocities) of bodies as well as values of physical parameters provided by INPOP13c at J2000. We have integrated
the differential equations with our software and plotted the differences between our solution and INPOP13c. In
Fig. 1 is shown the difference over the Earth-Moon distance on the left panel and the distribution around the
mean value on the right panel. In Fig. 2 is plotted the differences over the 6 Keplerian elements of the Moon,
and the three Euler’s angles and their time derivatives in Fig. 3.

Fig. 1. Left: Difference over the Earth Moon distance after an integration with initial conditions provided by INPOP13c.

The x axis is TDB time expressed in years since J2000. Right: Distribution of this difference around the mean value.

Fig. 2. Differences over the 6 keplerian elements of the Moon after an integration with initial conditions provided by

INPOP13c. The x axis is TDB time expressed in years since J2000.
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Fig. 3. Differences over the 3 Euler’s angles and their time derivatives after an integration with initial conditions provided

by INPOP13c. The x axis is TDB time expressed in years since J2000.

5 Conclusion

Our numerical solution of the orbital and rotational motion of the Moon, is very closed to the one of INPOP13c
over a time span of 120 years old centred at J2000, as shown with Fig. 1, 2 and 3. The remaining signal on Fig. 1
and 2 is totally explained by the differences of the two modelling (see Sec. 4) while no significant remaining
signal is found on Fig. 3. Currently we are fitting our numerical solution to LLR data with the CAROLL
reduction software available in POLAC using partial derivatives computed from variational equations.
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