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TESTING THE RAY-TRACING CODE GYOTO

M. Grould!, T. Paumard! and G. Perrin'

Abstract. In the next few years, the near-infrared interferometer GRAVITY will observe the Galactic
Center. Astrometric data will be obtained with an expected accuracy of 10 pas. In order to analyze those
future data, we have developed a code named GYOTO to compute orbits and ray-trace images. We want
to assess the validity and accuracy of GYOTO in a variety of contexts, in particular for stellar astrometry
in the Galactic Center.
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1 Introduction

GYOTO* (General relativitY OrbiT of Observatoire de Paris) is a ray-tracing code developed by [Vincent et al.
(2011). Tt integrates null and time-like geodesics in any analytical metrics and numerical metrics. This last
property makes GYOTO a unique ray-tracing code. GYOTO can compute images and spectra for a variety
of astrophysical objects, such as moving stars or accretion disks, around a Kerr black hole. Thanks to its
particularity, it can also compute images or trajectories of stars orbiting exotic objects such as a boson star
(Grandclément et al.|[2014)).

The main motivation for the development of GYOTO was to interpret the data to be obtained with the
second generation VLTI instrument GRAVITY (Eisenhauer et al.|2011). This instrument will observe stars and
flares orbiting Sgr A*. It will probe space-time near the central object with an expected astrometric accuracy of
10 pas. The stellar orbits measured by GRAVITY will be affected by several effects such as periastron shift and
Lense-Thirring effects (Will 2008] Merritt et al.[[2010). In additions, the individual astrometric measurements
will be affected by relativistic effects: time delay and lensing (Bozza & Mancini|2012). All these effects need
to be considered in apparent orbit model that will be fitted to the GRAVITY data, allowing to constrain the
nature of Sgr A* using the GRAVITY data. Since the goal of GRAVITY is to deliver astrometry at an accuracy
of 10 pas, models need to be more accurate than this value, in order to not limit the accuracy of final results.
We therefore aim for a model with an astrometric accuracy of 1 pas. In this paper, we study the accuracy
of GYOTO in order to determine whether this tool can be used as a foundation for a future apparent orbit
model to fit the GRAVITY data. Using the star images computed by GYOTO it will be possible to get the
apparent position of the star. However, the accuracy of this position will depend on the precision of the photon
trajectories. Null geodesics need to be properly computed by the integrator implemented in GYOTO in order
to take into account the correct bending effect. Beside, because of the 2”7 of field-of-view of GRAVITY, a
wide range of distances between stars and Sgr A* will be possible. GYOTO has never been used in such a
configuration, we need to ensure that geodesics are well computed.

We first focus on the Einstein ring radius. The aims are both to compare our numerical results with analytical
study on the Einstein ring radius performed by Sereno and De Luca in 2008 (Sereno & de Luca/2008), and to
check if the numerical error is sufficiently low, which means inferior or equal to 1 pas. The comparison between
GYOTO and the approximation is a validation of GYOTO in the weak deflection limit (WDL), however we
also have to check if this ray-tracing code is valid in the strong deflection limit (SDL). To do so, we choose to
compare null geodesics computed in GYOTO and with another code named Geokerr’ (Dexter & Agol 2009).
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2 The Einstein ring

To understand how the Einstein ring is formed, we remind basics of gravitational lensing using a Schwarzschild
lens. Then, we focus on Einstein ring obtained with a Kerr black hole. In both cases we consider a static
observer. The spin axis coincides with the z-axis. Spherical coordinates of the observer and the source, relative
to the lens L, are noted (rg, g, ¢o) and (rs, s, ¢5), respectively. Without loss of generality we choose to work
in the equatorial plane: ¥y = §, ¢o = 0 and ¥, = F. This yields (x¢,0,0) for the observer and (z,,ys,0) for
the source. We note M the lens mass and a the spin of the black hole ranging from 0 (Schwarzschild black
hole) to 1 (extremal Kerr black hole). In this paper, we use two different units for the distance: parsecs and
geometrical units. This last unit is equal to G;IZVI , with G the Newton’s constant and c¢ the speed of light, but
we will consider G = ¢ =1 and note it M.

2.1 Schwarzschild lens

Fig. 1. Spatial projection of
a Schwarzschild lensing situ-
ation: S corresponds to the
source, L to the lens and O
to the observer.

Using the notation of Fig we can write the useful lens equation (Schneider et al.||1992):

T's

p=0- (rs +10)

a(g), (2.1)
with 8 the unlensed angular position of the source, 8 the lensed angular position of the source equal to &/rg
and & the deflection angle depending on the impact parameter £&. The latter angle is also called the Einstein
angle whose expression is equal to &(§) = % with Rg = 26;# the Schwarzschild radius. We can rewrite the
lens equation as:

0> — B0 — a2 =0, (2.2)
with ap = 2Rsm. The magnification of the source in the lens plane is function of the lensed and
unlensed angles as:

B!
A=J" ' =|det—| . 2.3
tog (2.3)

A is infinite when J = 0. In the source plane, these positions are called caustics points (or primary caustic). For
a Schwarzschild lens, the caustic is a line behind the lens starting from it and extending toward infinity (Rauch
& Blandford|[1994). If the source lies on the caustic line then 8 = 0. Thus, the solution of the lens equation is
0 = a. A circle called critical curve is formed in the lens plane with a radius of ag. Considering the source as
a star the observer sees the well-known Einstein ring. The radius of the ring corresponds to the critical curve
radius so we get ag = 0 with 0p the Einstein ring radius. If the star does not lie on the caustic, the observer
will see two images named primary and secondary images. These images are formed by lensing effects. Light
rays are deviated because of the curvature of space-time by the black hole. At the caustic points, the lensed
images merge into the Einstein ring.

2.2 Kerr black hole lens

In the Kerr black hole case, there is also a primary caustic but it is not a line anymore (Rauch & Blandford
1994, Bozza|[2008)). [Rauch & Blandford| (1994]) were the first to discover that the primary caustic is a tube with
an astroid (four-cusped) cross-section. At large distances the cross-section is symmetric but becomes distorted
near the horizon. Besides, the closer the source to the black hole the larger the tube shifts with respect to
the Schwarzschild’s case. Very far from the black hole the shift is still significant but the size of the caustic
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(distance between the right and the left cusp of the astroid cross-section) decreases and tends to zero. To form
the critical curve with this caustic, the source must cover all of the astroid cross-section.

An analytical study of the Einstein ring radius was made by Sereno and De Luca in 2006 and 2008 (Sereno &
de Luca) 2006, |Sereno & de Luca/2008|). Their analytical approximation is obtained in the WDL. In this regime,
photons do not wind around the black hole which means ry >> Rg and the minimum distance between the
photon and the lens 7, must satisfy: Rg << Tmin.,- 10 this regime, the primary caustic is only shifted and
keeps a symmetric shape. Because of the shift of the caustic, the critical curve is not centered on the black hole.
In |Sereno & de Lucal|2008| the Einstein ring radius (or critical curve radius) equation is developed through a
Taylor expansion of the light-like geodesics in € = Z—g where D = T,S:fro and A is the Einstein ring radius. The
equation presents in this paper is expressed in the equatorial plane. The radius of the Einstein ring is given by:

15 67572 15 9(272 — 2572 a?
@Ef_veE{1+32ﬁa+ [4(1+D2)— il }52+W53 [D+4D2—(7T)—a] } (2.4)
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The left and the right radius of the critical curve are equal and depend on the spin in the third-order term in ¢.

To validate GYOTO in the WDL, we estimate the Einstein ring radius with GYOTO and make a comparison
with the formula (2.4). To reproduce the observational conditions of GRAVITY, we consider an observer at
ro = 8 kpc from a black hole of mass M equal to 4.31 x 10°M. We also consider a source far enough from the
black hole to be compliant with the domain of validity of this approximation. For each distance of the source,
we estimate the error made on the Einstein ring radius. Since the goal of this paper is to determine if the
accuracy of GYOTO is better than 1 pas, we only consider the maximum error of this parameter.

3 Results

3.1 Weak deflexion limit

Fig. 2. Absolute difference
between the analytical ap-
proximation ©pg and Ein-
stein ring radius measured
with GYOTO. The types of
line denote different values
of the spin: 0.2 in solid, 0.5
in dotted and 0.9 in dashed.
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On Fig we present the absolute difference between the analytical approximation (2.4) and Einstein ring
radius measured with GYOTO, obtained for three different spins. For all the range of the parameter, the
differences are always extremely small (~ 1072um). On the plot two different regimes can be observed. For
small x4, the curve is marked by a smooth, power-law decrease: GYOTO and the numerical approximation
agree better and better for larger and larger values of x,. After reaching a minimum, the curve raises again,
which a much more noisy appearance. This is due to the fact that, for small x5, GYOTO is better than the
analytical approximation. The difference between the two traces the order of the approximation. On the other
hand, for large values of x4, the approximation wins over GYOTO and the difference is dominated by the
numerical error of GYOTO. The maximal errors of the parameter evaluated with GYOTO, and for each spin,
are all smaller than 10~ 3uas. The ray-tracing code is very accurate, even for sources far behind the black hole
(€.8. 00p,y0, = 1.6 *pas at 200 parsecs).

The requirement on accuracy (< luas) is largely met in the weak field regime. However, an equivalent test
is necessary in the SDL regime.
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3.2 Strong deflexion limit
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The aim of this subsection is to check if null geodesics computed with GYOTO in the SDL are accurate
enough. To do so, we decided to compare photon trajectories computed with GYOTO with those computed with
the ray-tracing code Geokerr. Contrary to GYOTO, Geokerr computes photon coordinates semi-analytically
reducing the equations of motion expressed in the Hamiltonian formulation to Carlson elliptic integrals.

The comparison is made using the same observer coordinates and black hole parameters as before. We
evaluate null geodesics for three different values of the spin (0, 0.5 and 0.998) and we consider photons launched
from the center of the observer screen (« = § = 0). We first compute the geodesics with Geokerr and get the
dates of each point of the photon trajectory. Then, to get the null geodesics with GYOTO, we interpolate the
positions of photons with our ray-tracing code considering these dates.

The difference between positions evaluated with GYOTO and those evaluated with Geokerr are smaller than
10~3pas for a spin equal to 0.2, 0.5 or 0.998. This shows a very good consistency between the two ray-tracing
codes. Even for a photon which is not launched from the center of the screen (o =1.2 ppc), with a = 0.998, we
find a very small error (~ 6 x 107*M). An example of computed null geodesics with both codes are shown on

Fig[sl

4 Conclusions

The Galactic Center is a unique laboratory to observe stars close enough to a compact object to test General
Relativity. Thanks to GRAVITY it will be possible to measure astrometric positions of stars orbiting Sgr A*
with an expected astrometric precision of 10 pas. We have shown that GYOTO is extremely accurate even in
complex configurations. For the purpose of the interpretation of the future astrometric positions observed by
GRAVITY, GYOTO is accurate enough to model star trajectories and fit the GRAVITY data.

We want to thank Eric Gourgoulhon, Claire Somé, Jason Dexter and Stefan Gillessen for helpful discussions.
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