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NUMERICAL RELATIVITY AND SPECTRAL METHODS
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Abstract. The term numerical relativity denotes the various techniques that aim at solving Einstein’s
equations using computers. Those computations can be divided into two families: temporal evolutions on
the one hand and stationary or periodic solutions on the other one. After a brief presentation of those two
classes of problems, I will introduce a numerical tool designed to solve Einstein’s equations: the KADATH
library. It is based on the the use of spectral methods that can reach high accuracy with moderate compu-
tational resources. I will present some applications about quasicircular orbits of black holes and boson star
configurations.
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1 Introduction

In the strong field regime, gravitation must be studied in the framework of general relativity. The geometry
of the spacetime is described by the metric which gives the distance between neighboring points. It is a four-
dimensional, second order, symmetric tensor and so consists of ten components. This metric depends on the
energy content of the spacetime and the link between geometry and energy is given by the famous Einstein’s
equations. They consist of a set of ten highly coupled non-linear equations. Those equations are not easy to
solve and analytic solutions are known in only very few cases. Most of the time one relies on semi-analytically
methods (like the famous post-Newtonian expansion) or on computers to find solutions. This proceeding is
concerned with the latter case. In particular, I will briefly introduce a class of numerical techniques known as
spectral methods. Then I will present a numerical tool that enables the use of those methods: the KADATH
library.

The fields of astrophysics where general relativity must be taken into account are numerous. One can
think about coalescing compact binaries, especially with the first direct detection of the gravitational waves in
September 2015. General relativity in also important in supernovae simulations and for studying the structure
of neutron stars. There are also a lot of other applications that concerns more theoretical physics than classical
astrophysics. One can mention the study of critical phenomena or the stability of ADS spacetime. I will present
two applications, one about quasicircular configurations of compact binaries and one about objects that could
be a viable alternative to black holes: the boson stars.

2 3+1 formalism

The 3+1 formalism is a rewriting of Einstein’s equations in order to make them suitable for numerical resolution
(see Gourgoulhon (2012) for a review). It is essentially a splitting of the four spacetime dimensions into space
(the 3) and time (the 1). In order to do so one has to introduce a family of spatial hypersurfaces Σt such
that the full spacetime is given by the union of all those hypersurfaces. At each point of Σt one introduces the
normal n which is a timelike vector. The choice of Σt is not unique but is merely a choice of time coordinate.
Under those assumptions, the metric reads :

ds2 = −
(
N2 −N iNi

)
dt2 + 2Nidtdx

i + γijdx
idxj ,
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where N is the lapse, N i the shift vector and γij the spatial metric. All those objects are purely three
dimensional objects that live on the hypersurfaces Σt. It implies that the Latin indices range from 1 to 3 only.
However those quantities do depend on the hypersurface considered, meaning they do depend on time. So, to
summarize, instead of working with four-dimensional quantities, the 3+1 formalism describes the spacetime by
temporal sequences of purely spatial quantities.

The next step is then to project Einstein’s equations onto the hypersurfaces and on the normal n. Doing so,
one translates the four dimensional equations into a set of equations involving only spatial quantities. This leads
to the 3+1 equations of general relativity. They are given below, along with the Maxwell ones, for comparison
purposes.

Type Einstein Maxwell

Hamiltonian R+K2 −KijK
ij = 0 ∇ · ~E = 0

Constraints

Momentum : DjK
ij −DiK = 0 ∇ · ~B = 0

∂γij
∂t
− L ~Nγij = −2NKij

∂ ~E

∂t
=

1

ε0µ0

(
~∇× ~B

)
Evolution

∂Kij

∂t
− L ~NKij = −DiDjN+

∂ ~B

∂t
= −~∇× ~E

N
(
Rij − 2KikK

k
j +KKij

)
Di and Rij denote, respectively the covariant derivative and Ricci tensor associated to γij . Kij is the so-

called extrinsic curvature tensor and can be seen as being the velocity of the metric, in the sense that it is closely
related to the first time derivative of the metric. Indeed the first evolution equation is not one of Einstein’s
equation but merely the kinematic definition of Kij .

Solving this set of equations proceeds in two steps. First one needs to solve the initial value problem, meaning
one needs to find the values of γij (t = 0) and Kij (t = 0) that fulfill the constraint equations and that describe
accurately the physical situation one wants to study. Mathematically speaking it involves solving a set of four
elliptic coupled equations. The second step is the evolution problem where one uses the evolution equations
to get the values of γij and Kij at later times. Let us mention that the second order system is written as a
set of two first order equations, as it can be done in Newtonian dynamics if one rewrites Newton’s equation as
∂tx = v and ∂tv = f/m. If the constraint equations are fulfilled at t = 0 and if the evolution equations are
solved properly, it can be demonstrated that the constraints equations are going to be true for all times. One
says that they are transported by the evolution equations. Solving the evolution equations means having the
ability to maintain stability and accuracy and that requires good choice of coordinates, choice that is being
done via the lapse and shift.

3 Spectral methods

Spectral methods are a class of numerical techniques where the various fields are described by finite sums of
known functions called the basis functions. An introduction to those methods can be found in Grandclément
& Novak (2009).

In one dimension, consider an interval Λ and a set of orthogonal basis functions Φi on Λ. The spectral
theory gives then a recipe to approximate any function f of Λ by its interpolant of degree N :

f ≈ INf ≡
N∑
i=0

aiΦi,

where the ai are called the coefficients of f . Standard choices for the basis functions include orthogonal
polynomials like Legendre of Chebyshev or trigonometrical functions. In this second case, the spectral expansion
is nothing else than the usual discrete Fourier transform of f .

An important feature of the spectral expansion is the existence of the so-called collocation points. One
can show that there exist N + 1 points xi in Λ such that f and its interpolant coincide at those points :
f (xi) = INf (xi). It follows from that property that one has two ways of describing a function on Λ: either by
its coefficients ai or by its values at the various collocations points f (xi). There is a bijection between the two
descriptions and one can go back and forth between the two without any loss of precision. Depending on the
mathematical operation that one needs to perform on f it may be easier to work with one description or the
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other. For instance, derivation is much easier to perform using the coefficients description for it only requires
to know the derivative of the basis functions.

The main reason for using spectral methods is the very fast convergence of INf to the real function f . One can
show that, if f is C∞, then the convergence is faster than any power-law of N . This is called spectral convergence.
This is to be compared with finite difference schemes where only a power-law convergence is achieved. For less
regular functions however, spectral convergence is lost. In that case a multi-domain decomposition can be
used: by setting the domains such that the discontinuities lie at the interface, one can hope to recover spectral
convergence (the functions being C∞ by parts).

Figure 1 shows an example of spectral expansion. The blue curve corresponds to the function u (x) =

cos3 (πx/2) − (x+ 1)
3
/8, which is not polynomial but is C∞. The red curve denote the true projection of u

onto the set of Chebyshev polynomials and the green one the interpolant INu. All those three functions differ.
The circles show the location of the collocation points where, indeed, u and INu coincide. The left panel is for
N = 4 and the right one for N = 8. The convergence of INu to u is clearly illustrated.

Fig. 1. Left: Function (blue curve), its true projection onto the basis functions (red curve) and its spectral representation

(green curve). for N = 4. The circles denote the location of the collocation points.Right: Same thing for N = 8.

Figure 2 shows the maximum difference between u and its interpolant INu, as a function of N , for the same
function u as in Fig. 1. The error decreases exponentially until it reaches a saturation of about 10−14, coming
from the fact that the code works in double precision.

In order to solve differential equations using spectral methods, one relies on a class of techniques known as
the weighted residual methods. Consider a field equation written as R = 0, where R is given as a function of
some unknown fields (for instance R = ∆f −S for solving a Poisson equation). The weighted residual methods
provide a way of transforming this field equation into a set of discrete equations by demanding that (R, ξi) = 0.
Here (, ) denotes the same scalar product as the one used for the spectral expansion. The ξi are called the test
functions and various choices are possible. For instance, if one chooses as test functions the basis functions
themselves, the weighted residual method is called the τ -method. Some of the discrete equations must usually
be relaxed in order to enforce appropriate matching and boundary conditions.

4 The KADATH library

It is a library designed to enable the use of spectral methods in various context arising in the fields of astrophysics
and theoretical physics. It is written in C++ and makes an extensive use of object programming. The library
is intended to be very modular both in term of the geometry considered and the type of equations it can solve.
The equations are passed to the code with a text interface inspired by LateX that should be easy to grasp for
most researchers. A description of the library can be found in Grandclément (2010) and it can be downloaded
freely at http://luth.obspm.fr/~luthier/grandclement/kadath.html.

KADATH implements various choices of geometry and coordinates (spherical, bispherical etc...) and addi-
tional cases are relatively easy to add. When the library is used to solve a system of equations, the unknowns

http://luth.obspm.fr/~luthier/grandclement/kadath.html
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Fig. 2. Maximum difference between u and its interpolant, as a function of the number of coefficients.

are the coefficients of all the unknown fields in the whole space. Let us denote those coefficients by a vector ~x.
The equations are dealt with using the weighted residual method and they lead to a discrete system ~F (~x) = 0.

In general, the system considered is non-linear and the solution must be sought be means of a Newton-
Raphson method. One starts from an initial guess ~x0 and the true solution is approached by successive steps.
Each iteration requires the inversion a linear approximation of the system. More precisely the approximation

~xi+1 relates to the previous one by ~xi+1 = ~xi − ~δx, where ~δx is the solution of J
(
~xi
)
× ~δx = ~F (~xi), where J

is the Jacobian of the system (computed here at the position ~xi).

The Jacobian must be computed at each step of Newton-Raphson algorithm. In KADATH this is done
via a numerical technique called automatic differentiation. Basically, each quantity (here each coefficient) is
supplemented by its variation. One then talks about dual numbers. All the arithmetic is then redefined on

those dual number. Let us consider the dual form of the unknown vector denoted by
〈
~u, ~δu

〉
. The action of

~F in its dual form leads to
〈
~F , ~δF

〉
. It is possible to show that the variation ~δF gives some information on

the Jacobian. More precisely one has ~δF = J × ~δu. So, the Jacobian itself can be obtained by taking all the
possible values of ~δu.

One of the main difficulty comes from the fact that the size of the Jacobian can be big. For three-dimensional
problems, one can have to deal with a matrix of size 200, 000 × 200, 000. Because of this, KADATH has to
be run in parallel. Thanks to the automatic differentiation, the Jacobian is obtained column by column, each
computation being independent of the the others, so that this can be easily parallelized. The inversion of the
Jacobian is also performed in a parallel manner using the library scalapack. KADATH has been successfully
used with several thousands processors.

One of the main limitation of the library concerns explicit time evolutions. They are virtually non-existent
and the library is only concerned with solutions having some symmetry with respect to time (either stationary or
periodic solutions). The simplest way to deal with explicit time evolutions is to use a Runge-Kutta integration
with respect to time, using the spectral approximation only for the spatial dimensions. This is widely used and
seems to yield good results. An alternative is to use a spectral expansion also in time. For instance one can
expand the fields onto Chebyshev polynomials in time and integrate the evolution equation on a given interval
[0,∆T ], once the initial value of the fields are given (and possibly their first time derivative). The fields are
then known on [0,∆T ] and the procedure can then be repeated. The choice of the numerical parameter ∆T
is obviously important. Very preliminary tests indicate that this procedure works fine. However the resulting
code is much longer than its counterpart based on Rugge-Kutta. Whether there are some cases where spectral
expansion in time is really needed is still an open question.
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As seen before, most of the computational time is spent when calculating the Jacobian and solving the
associated linear system. There exists a class of alternative methods that could reduce this cost. They aim
at finding the solution of a linear system iteratively. There are various versions of those techniques (GMRES,
Bicgstab ...) but they are all based on the notion of Krylov subspace. Essentially the solution of the system
is assumed to be given by successive powers of J :

∑
n J

n × S. Using this property, one can show that each
step of the iteration requires only to be able to compute products like J × f where f is given (by the method
and the iteration...). It follows that, if the procedure converges with a number of iteration much smaller than
the size of the Jacobian, those iterative techniques would be much faster than the direct inversion. Also they
do not require to store the matrix J and so are usually less expensive in terms of memory usage. However the
main limitation of those iterative techniques is that convergence is far from being guarantied. Most of the time
it requires a carefully preconditioning of the system and q fine-tuning of the various computational parameters.
Those methods are probably not general enough to be used for all the applications of KADATH. Nevertheless,
for some particular cases, it may be useful to allow the user to have access to those techniques and there are
plans to include them in the KADATH library. A detailed presentation of various iterative methods can be
found in Saad (2003).

5 Some applications

5.1 Boson star models

Boson stars are one of the alternative to black holes, especially in the context of supermassive objects at the
center of galaxies. By this one means that they can have a great mass inside a small radius, without the presence
of an event horizon. Boson stars are described by a complex scalar field coupled to gravity. The structure of
those objects is then given by the solution of Einstein’s equations (for the gravity) coupled to the Klein-Gordon
one (for the scalar field).

Boson stars are obtained when considering the following ansatz for the scalar field φ = φ0 exp [i (ωt− kϕ)].
Doing so, the quantity φ0 is real and only depends on (r, θ). The metric fields are also axisymmetric and
stationary. The various boson star models are labelled by the winding number k which is an integer, and the
real pulsation ω. InGrandclément et al. (2014) we solved the equations using a two-dimensional setting in
KADATH (i.e. the Polar space). The left panel of Fig. 3 shows the configuration of the field φ0 in the case
k = 2 and ω = 0.8.

Numerical models can be used to deduce observational constraints on the existence of boson stars. For
instance, Vincent et al. (2016) have simulated the image of an accretion disk around such an object and see if
there are some differences with accretion disk around a black hole. This is what is done on the right panel of
Fig. 3. In this particular case however, it was noted that the two images were very close, even if the geometry
of spacetime is different. Nevertheless, the study of various physical effects around boson stars should lead to
several observational tests that could be used, in the future, to rule out or confirm the existence of such objects.

5.2 Quasi-circular compact binaries

This application is concerned with the computation of binary black hole configurations. It is assumed that the
two holes are on closed circular orbit. This cannot be exact: due to gravitational wave emission the orbit is
rather a spiral. However, in the early stages of the binary this is probably a good approximation. From the
practical point of view it greatly simplifies the problem by removing any explicit time evolution (the problem
becomes three-dimensional only). An additional approximation that is used is the so-called conformal flatness
approximation which assumes that the spatial metric is conformally flat. Not only does it simplify the equations
but it also kills the gravitational waves.

Under those assumptions, the mathematical problem reduces to solving five coupled non-linear elliptic
equations for five unknown fields. Non-trivial boundary conditions must be enforced on the horizon of the
holes. The system is solved using the bispherical coordinates of the KADATH library (see Uryũ et al. (2012)).
Figure 4 shows one particular configuration where the mass ratio of the two objects is two. The upper panel
shows the value of the surface gravity on the two holes. As expected, this quantity is inversely proportional
to the mass of each hole. Also, as seen on the lower panel, it is almost constant on each horizon. This is a
numerical confirmation of what is know as the zeroth law of black hole thermodynamics.
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Fig. 3. Left: Isocountours of φ0 in the (x, z) plane. The field is symmetric around the z-axis.Right: Image of an

accretion disk around a k = 4, ω = 0.77 boson star.

(b)

(a)

Fig. 4. Surface gravity of black holes in circular orbit. The mass ratio is two. The upper panel shows the surface gravity

itself and the lower one its relative variation on each hole.

6 Conclusions

After years of struggles numerical relativity is able to produce meaningful results. Nevertheless there are still
some work that needs to be done. One can mention the computation of more realistic initial data or the study
of alternative models to black holes. Spectral methods are a powerful tool to do so. I have presented a library
that enables the use of such methods, in a very modular manner: the KADATH library. It has already produced
results in various fields, from compact objects to theoretical physics. Future developments of the library are
planed, for instance by providing alternative mathematical methods to solve the discrete system resulting from
the spectral approximation. An effort should also be made to make this tool easier to use, by providing better
documentation, examples and tutorials.
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