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HOW BARYONIC FEEDBACK PROCESSES CAN AFFECT DARK MATTER HALOS:
A STOCHASTIC MODEL
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Abstract. Feedback processes from stars and active galactic nuclei result in gas density fluctuations
which can contribute to ‘heating’ dark matter haloes, decrease their density at the center and hence form
more realistic ‘cores’ than the steep ‘cusps’ predicted by cold dark matter (CDM) simulations. We present a
theoretical model deriving this effect from first principles: stochastic density variations in the gas distribution
perturb the gravitational potential and hence affect the halo particles. We analytically derive the velocity
dispersion imparted to the CDM particles and the corresponding relaxation time, and further perform
numerical simulations to show that the assumed process can indeed lead to the formation of a core in
an initially cuspy halo within a timescale comparable to the derived relaxation time. This suggests that
feedback-induced cusp-core transformations observed in hydrodynamic simulations of galaxy formation may
be understood and parametrized in relatively simple terms.
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1 Introduction

Despite its huge success at explaining the large scale structure of the Universe, the cold dark matter (CDM)
model of structure formation faces different challenges at galactic scales. In particular, while CDM numerical
simulations predict steep, ‘cuspy’ density profiles for dark matter halos, observations of dark matter dominated
galaxies favor more shallower ‘cores’ (e.g., Moore 1994; de Blok et al. 2008; Oh et al. 2011).

Proposed solutions to this ‘core-cusp’ discrepancy and the related challenges of CDM cosmology, such as the
‘too big to fail’ problem, can be broadly divided into those considering fundamental changes in the physics of the
model and those focusing on the baryonic processes at stake during galaxy formation and evolution. The first
category of solutions comprises alternatives to CDM such as warm dark matter, self-interacting dark matter
and models that fundamentally change the gravitational law like Mordechai Milgrom’s MOND theory. Solu-
tions invoking baryonic processes within the CDM framework are motivated by the fact that the discrepancies
between model and observations precisely occur at the scale at which baryons start to play an important role,
notably through powerful stellar and active galactic nuclei (AGN) feedback processes and outflows. Moreover,
hydrodynamical simulations with different feedback implementations are able to reproduce dark matter cores
(e.g., Governato et al. 2010; Teyssier et al. 2013). However, such complex simulations do not necessarily specify
the physical mechanisms through which baryons affect the dark matter distribution.

Baryons can mostly affect the dark matter halo through their own gravity and by modifying the gravitational
potential. Such is the case with adiabatic contraction (when the accumulation of cold gas at the center of the
halo steepens its potential well and causes the dark matter to contract; Blumenthal et al. 1986) and with the
dynamical friction through which a massive object such as a satellite galaxy or a clump of gas can transfer
part of its kinetic energy to the dark matter background (Chandrasekhar 1943). This latter process can ‘heat’
the dark matter halo and remove the central cusp (El-Zant et al. 2001). Alternatively, repeated gravitational
potential fluctuations induced by stellar winds, supernova explosions and AGN could also dynamically heat
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the dark matter and lead to the formation of a core (Pontzen & Governato 2012). In this case, variations in
the baryonic mass distribution induce violent potential fluctuations which progressively disperse dark matter
particles away from the center of the halo.

To isolate further the physical mechanism at stake during core formation, we present and test an a priori
theoretical model in which the gravitational potential fluctuations leading to core formation arise from feedback-
induced stochastic density variations in the gas distribution. Dark matter particles experience successive ‘kicks’
from the potential fluctuations, which cumulatively induce them to deviate from their trajectories as in a
diffusion process or as two-body relaxation does for stellar systems. This work is described in more details in
Freundlich (2015), Chapter 4, and El-Zant et al. (2016).

2 Theoretical model

2.1 Stochastic density fluctuations

We assume that the potential fluctuations leading to core formation arise from stochastic density perturbations
in a gaseous medium of mean density ρ0 confined within a sphere of radius d corresponding to the inner region
of the halo. The density contrast δ(r) = ρ(r)/ρ0 − 1 can be Fourier decomposed over V = d3 such that

δ(r) =
V

(2π)3

∫
δke

−ik.rdk. (2.1)

The perturbations are assumed to be isotropic, stationary and described by a power-law power spectrum

P(k) = V 〈|δk|2〉 ∝ k−n. (2.2)

Turbulent media such as the interstellar medium are indeed expected to display power-law power spectra as
fluctuations initiated at large scale cascade down to the dissipation scale. For the sake of our calculations, we
also assume minimum and maximum cutoff scales 2π/kmax � 2π/kmin.

2.2 Repetitive kicks on the dark matter particles

Each perturbation mode δk induces a small ‘kick’

F k = 4πi Gρ0 k k−2 δk (2.3)

on the dark matter particles, the cumulative effect of these kicks leading the particles to deviate from their
trajectories by a mean velocity variation after a time T such that

〈∆v2〉 = 2

∫ T

0

(T − t) 〈F (0)F (t)〉 dt. (2.4)

This description is analogous to two-body relaxation in stellar systems, in which the kicks correspond to the
successive interactions of the particles with one another.

2.3 Relaxation time in the diffusion limit

In the diffusion limit where 2π/kmin � R, i.e., where the density perturbations are small compared to the
distance R traveled during T by the dark matter particles with respect to the fluctuation field, we analytically
obtain a relaxation time

trelax =
nvr〈v〉2

8π(Gρ0)2V 〈|δkmin |2〉
, (2.5)

where vr = R/T is the mean velocity of the dark matter particles with respect to the fluctuating field and 〈v〉
their initial orbital velocity. This expression assumes that the spatial statistical properties of the perturbations
expressed through the force autocorrelation function 〈F (0).F (r)〉 can be transported into the temporal domain
such that 〈F (0).F (t)〉 = 〈F (0).F (r = vrt)〉 (e.g., Wilczek et al. 2014, and references therein). The resulting
relaxation time does not depend on the minimum and maximum cutoff scales, and only linearly on the power
law exponent n. It mainly depends on the gas mass fraction through ρ0 and the normalization of the power
spectrum of the density fluctuations.
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2.4 Application to a fiducial dwarf galaxy

We evaluate the relaxation time for a fiducial dwarf NFW halo, assuming orbital velocities 〈v(l)〉 ∼ l
√
Gρ(< l)

and gas movements dominated by those at the largest fluctuation scale, with vr ∼ d
√
Gρ(< d/2)/2, ρ(< l)

being the average density inside radius l. The halo is assumed to have a scalelength Rs = 0.9 kpc and
a total mass Mvir = 2.26 1011 M� inside Rvir = 30 kpc. The gas mass fraction inside d/2 = 5 kpc is
f(d/2) ≡ ρ0/ρ(< d/2) = 0.17 and we assume a power spectrum with n = 2.4 and 〈|δkmin |2〉 ≈ 0.005. Eq. 2.5
yields a relaxation time of about 3.5 Gyr within d/2, decreasing towards the very center of the halo. This gives
a timescale at which the density variations are expected to affect the trajectories of the dark matter particles,
but does not specify the global response of the system.

3 Numerical test

3.1 Numerical test setup

In order to test the effects of power-law density fluctuations as in our theoretical model on the dark matter
distribution of a galactic halo, we use the self-consistent field (SCF) method developped by Hernquist & Ostriker
(1992). This algorithm was designed to describe the evolution of collisionless stellar systems by computing the
gravitational potential at each time step and advancing the trajectories of the particles one by one accordingly.
The density and the potential are expanded in a set of basis functions deriving from spherical harmonics with
radial and angular maximal cutoff numbers nmax and lmax.

We carry out such a simulation for the fiducial dwarf halo described in section 2.4, adding force and potential
perturbations as in our theoretical model. The direction of each kick is random, and the total force is rescaled a
posteriori to match the assumed power spectrum normalization. We further assume that the pulsation frequency
associated to a mode k is either defined with a constant propagation velocity as ω(k) = vrk or from Larson’s
relation (Solomon et al. 1987) as ω(k) = 2

√
k, both choices yielding similar results.

3.2 Spherical case: a flattening of the cusp as expected from the theoretical model

To neglect non-radial modes and match more closely the analytical calculations, we start by considering the
case where strict spherical symmetry is maintained by imposing lmax = 0. The resulting evolution of the halo
density profile is shown on the left panel of Fig. 1: the assumed stochastic density fluctuations do lead to the
formation of a core in an initially cuspy configuration within a timescale comparable to the relaxation time
derived analytically. As expected from Eq. 2.5, the effect mostly depends on the fluctuation level and the gas
fraction, with a weak dependence in n and no variations with kmin and kmax (cf. El-Zant et al. 2016).

3.3 General case: an accelerated cusp-core transformation due to non-radial modes

In the general case, lmax 6= 0 and no spherical symmetry is imposed on the system. An optimal choice for
a simulation with ∼ 105 particles is nmax = 10 and lmax = 4 (Vasiliev 2013). In this case, the cusp-core
transformation is significantly faster than in the previous case but its parametrization remains unchanged,
which can be seen on the right panel of Fig. 1. As the perturbations imposed on the halo particles are the same
as when spherical symmetry is enforced, the difference must stem from how the imparted energy is transported
and redistributed within the halo. This suggests that azimuthal modes significantly boost core formation and
that the processes through which the energy stemming from the fluctuations is redistributed are largely non-
isotropic. Such a conclusion is in agreement with Pontzen et al. (2015), who also show that the non-sphericity
of dark matter haloes is a key ingredient for an efficient cusp-core transition.

4 Conclusion

We presented and tested through simple collisionless simulations an a priori theoretical model to describe the
cusp-core transformation of dark matter haloes in which gravitational potential fluctuations arise from stochastic
density variations in the gas distribution. Different stellar and AGN feedback mechanisms can account for such
density variations. Their dynamical effects are modeled as a diffusion process in which repetitive kicks to the
dark matter particles contribute to heating the halo and to forming a core. This model provides a relatively
simple parametrization of the cusp-core transformation, mostly depending on the gas fraction and the fluctuation
level.
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Fig. 1. Left: Evolution of the dark matter density profile for the fiducial halo described in section 2.4 with strict spherical

symmetry imposed at each time step through lmax = 0. The halo is submitted to a fluctuating gravitational potential

stemming from power-law density fluctuations as in our theoretical model, presented in section 2, and forms a core from

an initially cuspy NFW profile within a few Gyr. Right: A similar evolution is observed on a much smaller timescale

when no strict spherical symmetry is imposed. On both sides, the shaded area highlights the scatter at t = 500 Myr

between 10 random realization of the simulation with lmax 6= 0.

A detailed comparison with hydrodynamical simulations is left to a future study. Different feedback imple-
mentations are likely to change the statistical properties of the fluctuating density field and hence the efficiency
of the cusp-core transformation, which we could compare with our parametrization. Other theoretical models
attempt at describing this transformation, with differences but also some similarities. Amongst them, Dutton
et al. (2016) propose a spherical model based on a succession of global inflows and violent outflows, while Fouvry
et al. (2016) focus on a diffusion mechanism not unlike ours but described by a dressed Focker-Planck equation.
The predictions of these different models should be compared together with hydrodynamical simulations, the
importance of non-radial modes and asphericity being one of the issues to be investigated more thoroughly.

This work benefited from the Franco-Egyptian Partenariat Hubert Curien (PHC) Imhotep and the ERC-Momentum-267399.
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