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INTERNAL ROTATION OF γ DORADUS STARS
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Abstract. Thanks to the exquisite Kepler data, resulting from four years of quasi-continuous photometric
observations, we are now able to use g-modes in order to reveal the internal structure of γ Doradus stars. In
particular, it is now possible to detect series of g-modes with non-uniform period spacing, which carry the
signature of internal rotation. In a theoretical work published earlier this year, we have defined a new seismic
diagnostic for rotation in the γ Doradus stars that are rotating too rapidly to present rotational splitting. It
is based on a new observable that is the slope of the period spacing when plotted againt the period. Here we
recall the one-to-one relation between this observable and the internal rotation rate. We explain how it can
be used without any additional constraint in order to retreive the rotation rate in the cavity probed by the
observed g-modes. Finally we evaluate the uncertainty induced by the use of the asymptotic formulation of
the traditional approximation, and we give a word of caution concerning retrograde modes.
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1 Introduction

γ Doradus (γ Dor) stars are late A- to early F-type stars, of masses between 1.3 and 2 M�, on the main sequence.
Thanks to the four years of nearly continuous photometry from Kepler, we were finally able to measure their
g mode pulsations to the precision level required to perform seismic modelling. These g modes probe the
innermost regions and in particular the interface between the convective core and the radiative envelope, where
transport of chemical elements and angular momentum is expected to occur. Whether this transport is caused
by overshooting, shear induced turbulence or gravity waves is still matter of debate. In this context, the
determination of internal rotation rates in γ Dor stars constitutes a valuable constraint.

These stars typically have projected rotation velocities of around 100 km s−1, but that can reach up to
250 km s−1 (see for instance Abt & Morrell 1995; Royer 2009). Rotation lifts the degeneracy of pulsation
frequencies. For slow rotation, g modes in γ Dor stars can exhibit splittings which can be used in order to
determine the rotation rate in their propagation cavity (see Kurtz et al. 2014; Saio et al. 2015; Schmid et al.
2015; Keen et al. 2015; Murphy et al. 2016). In the case of moderate to rapid rotation, the structure of the
frequency spectrum differs drastically. The prograde modes are shifted towards higher frequencies, whereas the
retrogrades are shifted towards lower frequencies, to such an extent that they appear in the spectrum as clusters
of modes, each with given angular degree (`) and azimuthal order (m), and varying radial orders. Moreover,
each of these clusters show a period spacing with a linear trend (Bouabid et al. 2013) which is related to the
identity of the modes {`,m}, and the rotation velocity in their cavity.

Based on this and making use of an approximate treatment of rotational effects, the traditional approximation
(TAR), Van Reeth et al. (2016) performed seismic determination of rotation in a sample of γ Dor stars observed
by Kepler. We opted for the development of seismic diagnostics which are model independent, and are therefore
not affected by the lack of knowledge of the stellar structure. To establish such diagnostics, we make use of
non-perturbative calculations for the effect of rotation on γ Dors g modes (implemented in the ACOR code, see
Ouazzani et al. 2012, 2015).
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2 A new asteroseismic diagnostic for internal rotation in γ Doradus stars

As mentioned above, in γ Dor stars that are moderate to rapid rotators, the modes gather by ` and m, and
their period spacings (∆P ) vary linearly with modes periods. In Ouazzani et al. (2016) we have shown that the
slope of this trend, which we named Σ`,m strongly depends on the rotation in the probed cavity, and marginally
on other aspects of the stellar structure. This is illustrated in Fig. 1 (left), which represents the slope Σ as a
function of the rotation rate, for dipolar (` = 1) modes. The solid lines are the average of Σ, calculated with
the non perturbative method, for three representative models of γ Dor stars, which have been computed by
the CLES code (Code Liégeois d’Évolution Stellaire, Scuflaire et al. 2008): the model 1z is 1.4 M� on the
zero-age-main-sequence (ZAMS), the model 2m is 1.6 M� mid-way on the main-sequence (MS), and the model
3t, a 1.86 M� star on the terminal-age-main-sequence (TAMS). We used the asymptotic formulation of the
TAR to evaluate the scatter caused by the difference in structure encountered in the γ Dor instability strip (see
Ouazzani et al. 2016, for more details). This yields the dispersion areas in colour in Fig. 1 (left).

Hence, we established a one-to-one relation between the observable Σ`,m and the average rotation velocity
in the cavity probed by the g modes of angular degree ` and azimuthal order m. The largest spread is obtained
for the retrograde modes, this is treated is further details in Sect. 3.2. As a proof of concept, we chose
four stars which have been quasi-continuously observed by observed by Kepler for 18 quarters (Kepler input
catalog number KIC 4253413 and KIC 6762992), 17 quarters (KIC 5476299) and 15 quarters (KIC 4177905),
respectively. Their measured oscillation periods were extracted using the classical pre-whitening procedure
(Period04, Lenz & Breger 2005) and are plotted against their period spacings in Fig. 1 (right). We rely on the
combined knowledge of the range of observed periods, their period spacings, as well as the slope Σ in order to
identify the angular degree ` and azimuthal order m of the ridges. The four sequences of modes were identified
as belonging to dipolar prograde modes. The slopes of the period spacings series were determined using a simple
linear fit of the data points. By reporting these slopes in the diagram given in Fig. 1 (left), we directly retreive
the average rotation frequency in the cavity probed by these modes. The results are the following: 7.1 ± 0.9
µHz for KIC 6762992, 9.8 ± 0.9 µHz for KIC 4177905, 10.7 ± 1.4 µHz for KIC 4253413, and 17.8 ± 2.9 µHz
for KIC 5476299.

Fig. 1. Left: Diagram giving the one-to-one relation between the slope of the period spacing, i.e. the observable Σ,

and the rotation frequency established as an average of the non-perturbative calculations for models 1z, 2m, and 3t.

It is given here for dipolar modes: prograde modes in red, zonal modes in black and retrograde modes in blue. The

dispersions correspond to the variations of Σ due to the mass, age on the main sequence, metallicity, and type of mixing

on the edge of the convective core, computed using the asymptotic formula at each rotation rate for a grid of models

covering the γ Dor stars instability strip. Right: Period spacing as a function of the period for four sequences of modes

observed in four stars observed by Kepler: KIC 6762992 in black points, KIC 4177905 in red points, KIC 4253413 in

blue points, and KIC 5476299 in green points. The grey lines correspond to the linear fits used to determine the slope

of the respective ridge.
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3 A word of caution

In the previous section, we give the one-to-one relation between the slope of the period spacing series, and the
internal rotation rate in γ Dor stars, as introduced by Ouazzani et al. (2016). In this section, we evaluate the
uncertainties induced by using the asymptotic formulation of the TAR for the determination of the rotation
rate from Σ. Moreover, we investigate more closely the specificity of retrograde modes.

3.1 Uncertainties related to the use of the Asymptotic formulation of the TAR

In rotating stars, the equation system for pulsations is not separable in terms of the radial and horizontal
coordinates, unlike for the non rotating case. The TAR is not a perturbative method. This is an approximate
treatment which conserves the separability of the system by making specific assomptions. The first one is that
the stars is rotating as a solid body. The centrifugal distortion is neglected, i.e. the spherical symmetry is
assumed. Moreover, considering the properties of high radial order g modes, the TAR neglects the Coriolis force
associated with radial motion, and radial component of the Coriolis force associated with horizontal motion.
Finally, the Cowling approximation is made (Cowling 1941). Under the TAR, the simplification of the problem
allows for an asymptotic formulation derived from the Tassoul (1980) formula for g-mode periods, where `(`+1)
is replaced by λ. This eigenvalue depends on `, m and the spin parameter s = 2νrot/νco, νco being the frequency
of the modes in the corotating frame. The asymptotic formula gives:

Pco(n) =
2π2(n+ 1

2 )√
λ`,m,s(n)

∫ r1
r0

N
r dr

and 〈∆Pco〉 '
2π2√

λ`,m,s(n+1)

∫ r1
r0

N
r dr

(
1 + 1

2
d lnλ
d ln s

) (3.1)

The asymptotic formulation requires very little computational resources and time. For that reason it is often
used in order to study the pulsational properties of grids of stellar models. However, the aim here is to
investigate its validity when used to model the diagnostic Σ, compared to the non-perturbative method. To
do so, we computed the slopes Σ of dipolar modes period spacing series computed with the two methods for
the three representative models 1z, 2m, 3t mentioned before. The largest uncertainties arise for the model 1z,
which is chosen to be shown in Fig.2. The period spacing is plotted against the period for model 1z with a
rotation frequency ranging from 11 to 23 µHz, computed with the non-perturbative method (lines with points),
and with the asymptotic formulation (solid lines).

Fig. 2. Left: Period spacing as a function of the period for model 1z, computed with the asymptotic formulation

(solid lines) and with the non perturbative method (ACOR lines with points) for rotation frequencies ranging from 11

to 23 µHz. Right, top: Slope Σ of the period spacing series as a function of the rotation frequencie of the model 1z,

computed with the TAR asymptotic formulation (open squares), and with the non-perturbative method (ACOR, filled

circles), for prograde (purple), zonal (green), and retrograde modes (blue). Right, bottom: Discrepancy between the

two computations.
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One striking difference between these two series of curves is the occurence of dips for the non-perturbative
series, around the same period spacing value whatever the rotation rate. These dips occur preferentially at
higher rotation frequencies (from νrot = 13µHz upwards). After exploring the pulsation spectrum of modes
with higher ` values, it turns out that these features in the ` = 1 series appear in the frequency range where
g modes of ` = 3 are increasingly numerous in the spectrum. Even if conserving a dominant ` = 1 character,
modes in this region are bumped into and perturbed by their ` = 3 counterparts. These dips appear for the
retrograde and zonal modes, because for prograde modes the shift in frequency due to rotation is such that g
modes of different ` do not lie in the same frequency range at all.

These features are not at all reproduced by the asymptotic formulation, and they seem to modify the overall
slope of the ridges noticeably towards negative values. However, let us compare the period spacing series, when
the dips are removed from the ridges, i.e. far from the dips. The result is given in Fig.2 (right). Apart from an
overall increasing trend with rotation, the discrepancy it is not negligible at low rotation frequency (around 10
% at νrot = 2.5µHz), and can reach up to approximately 20 % for zonal modes at high rotation.

3.2 The case of retrograde modes

In the inertial frame of reference, the effect of rotation of g modes is twofold: the intrinsic effect of the Coriolis
and centrifugal forces, and the change of reference from the corotating frame to the inertial one. Zonal modes
are not impacted by this change of frame, but retrograde modes are shifted towards shorter periods, whereas
prograde modes are shifted towards longer ones respectively. For retrograde modes, this shift substracts from
the intrinsic effect of rotation. The specificity of retrograde modes resides in the competition between these
two effects. Although quantitatively inaccurate, the asymptotic for the period spacing helps understand this
phenomenon. Following Eq. (3.1) the period spacing in the inertial frame can be written as:

∆Pin ∝
1√

λ`,m,s

(
1−m Pco

Prot

) , (3.2)

where the factor
√
λ`,m,s

−1
comes from the TAR and stands for the Coriolis effect on the pulsations in the

corotating frame, and
(

1−m Pco

Prot

)−1

for the change of reference frame. As rotation varies, three regimes can

be identified for the behaviour of ∆Pin:

• Slow rotation: when the pulsation periods are significantly smaller than the rotation period, ∆Pin follows
the behaviour given by the Ledoux (1951) perturbative formalism at first order. This is illustrated in
Fig. 3, with the two green ridges, computed for models rotating at 2.33 µHz (4.97 days). The green open
triangles are obtained with the Ledoux formula, whereas the green open circles are obtained with the
non-perturbative calculations. For inertial periods shorter than Prot/4 (straight dashed green line), the
∆Pin follows the first order perturbative formula.

Fig. 3. Period spacing as a function of period in the inertial

frame for retrograde modes computed for a 1.86 M� (filled

symbols), and a 1.60 M� (open symbols) stellar models, with

the ACOR code (circles), or with the Ledoux splitting (tri-

angles), for slow rotation (νrot1 =2.33 µ Hz, green) and rapid

rotation (νrot2 =13.0 µ Hz, blue). The two vertical dashed

lines stand for the period in the inertial frame that equals the

rotation period Prot2 = 0.89 days for the rapid rotation case,

and when it equals a quarter of the rotation period for the

slowly rotating case Prot1/4 = 1.24 days. Some modes are

discarded for not presenting a clear ` = 1 character.
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• For inertial periods Pin longer than Prot/4, the rotational effect is determined by Eq. (3.2). For Pin
shorter than Prot, i.e. in the superinertial regime, the behaviour of ∆Pin is dominated by the factor√
λ`,m,s

−1
, which causes a decreasing trend of ∆Pin with respect to Pin. This is illustrated in Fig. 3 by

the part of the blue ridges which are leftward of the dashed blue line.

• For Pin longer than Prot, i.e. in the subinertial regime, the effect of the change of reference frame dominates
under the form of an asymptotic behaviour towards infinity.

The spread in Σ for retrograde modes, shown in Fig. 1, is explained by the difference between the two blue
ridges (open and filled circles) in Fig. 3. The difference between the two ridges resides in the period of modes
of given radial order: for the 1.6 M� model (blue open circles), the modes are more numerous on the decreasing
part of the ridge than for the 1.86 M� model (blue filled circles). As a result, when performing a linear fit of
these points, the slope of the ridge corresponding to the 1.6 M� model is smaller than for the 1.86 M� model.
In other words, because these ridges are not linear, the periods change of the excited modes (radial orders n
between -50 and -15) due to a change of the model’s parameters impacts Σ. Therefore, should the diagnostic
given in Fig. 1 be used on observed series of retrogrades modes, we would recommend a more detailed modelling
accounting for the period range on which the parameter Σ is determined.

4 Conclusions

We have reported on the establishment of a new seismic diagnostic of rotation for g modes when the rotational
splitting cannot be extracted correctly: Σ, the slope of the period spacing when plotted against the period.
We give the one-to-one relation between Σ and the internal rotation rate. We then explore the relevance of
using the asymptotic formulation of the TAR in order to establish the one-to-one relation mentioned above. It
appears that the asymptotic method fails to reproduce features that are related to the multiple ` character of
the modes. When these features are removed, the uncertainties can be significant, but lower than the spread
in Σ due to the differences of internal structures encountered in the γ Dor instability strip. Finally we give a
word of caution concerning the use of the Σ diagnostic with retrograde mode, and explain in details the peculiar
nature of these modes.
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