SEF2A 2019
P. Di Maiteo, O. Creevey, A. Crida, G. Kordopatis, J. Malzac, J.-B. Marquette, M. N’Diaye, O. Venot (eds)

DEEP LEARNING FOR THE SELECTION OF YOUNG STELLAR OBJECT
CANDIDATES FROM IR SURVEYS

D. Cornu! and J. Montillaud!

Abstract. The robust identification of YSOs is an important step for characterizing star-forming regions.
Such classification is commonly performed with infrared suveys using straight cuts in CMD diagrams. How-
ever, Machine Learning algorithms may outperform these methods with adaptive and non-linear separations
in any number of dimensions. In this paper we present our methodology to implement a supervised deep
neural network for YSO classification with various datasets built from well-known regions. We detail the
tuning of the network parameters, taking into account the specificities of this classification. Then we focus
on the reliability of the classification and address difficulties due to the strong dilution of YSOs against
contaminants.

Keywords: Young Stellar Objects, Spitzer, Infrared, Machine Learning, ANN, Classification, Protostars

1 Introduction

Observing Young Stellar Objects (YSOs) in stellar clusters can be used to characterize star-forming regions.
Their presence testifies the star-formation activity and allow one to quantify its efficiency. They can also be a
probe of cloud density which can be combined with astrometric surveys like Gaia to recover the 3D structure and
motion of star forming clouds (Grossschedl et al.||2018]). They are often identified with a classification method
that mainly rely on their Spectral Energy Distribution (SED) in the infrared (IR). One can also separate them
in evolutionary steps from the star-forming phase to the main sequence (class 0 to IIT), granting even more
information on the structure and evolution of star-forming regions.

In this context we aim to design a classification method for YSOs, relying on large surveys and taking
advantage of modern statistics analysis. We choose to use Artificial Neural Networks (ANN) which are popular
supervised machine learning methods, and have shown strong performance on a wide variety of problems.
Since it belongs to supervised methods we rely on an original classification that provides targets for the training
phase. For this we use the popular method by Gutermuth et al.|(2009) which describes a multi-step classification
scheme using the Spitzer space telescope (Werner et al.||2004) surveys (using 5 bands between 3 and 24 um) .
In this study we focus on bright star-forming regions observed with Spitzer whose physical properties are well
constrained. In this paper we show results based on a combination of three different dataset, namely, Orion
(Megeath et al.|2012)), NGC 2264 (Rapson et al.|2014)), and a sample of clouds nearer than 1 kpc that exclude
the two previous regions (Gutermuth et al.|[2009). We briefly describe our implementation of a Multi Layer
Perceptron (MLP), a kind of ANN, with a special emphasis on how to properly link the physical problem to
the network. Therefore, we detail common good practices for the data preparation and a proper representation
of results.

2 Deep Learning method

2.1 Deep Artificial Neural Network : Multi Layer Perceptron

The core element of ANN is a mathematical model of neuron (McCulloch & Pitts (1943 that performs the
weighted sum h of an input vector. It is then given to an activation function g(h) which usually resembles a

I Institut UTINAM - UMR 6213 - CNRS - Univ Bourgogne Franche Comté, France, OSU THETA, 41bis avenue de I’Observatoire,
25000 Besancgon, France - email : david.cornu@utinam.cnrs.fr

© Société Francaise d’Astronomie et d’Astrophysique (SF2A) 2019

74 SEF2A 2019

binary activation. One usual activation function is the Sigmoid : a = g(h) = 1/(1 4 exp(—ph)), where a is
the result of the activation and 5 an hyperparameter of the network. One neuron alone only performs a linear
separation. Therefore, they can be added in the form of a deep ANN. For this, neurons can be added in two
different ways. The first one is by adding neurons independently in a layer. Each neuron is then fully connected
to the input layer with no connection between neurons of the same layer. The second one is to add multiple
layers on top of each other. In this case a layer will take as its own input vector the result of the activation of
the neurons from the previous layer.

Such an ANN is a universal function approximator (Cybenko|[1989)), called a Multi Layer Perceptron (MLP)
(Rumelhart et al. 1986, which is able to perform classification, regression, clustering, time series prediction,
compression, image recognition, ... ANN are supervised machine learning methods, therefore they need to be
trained on previously labeled data. To learn, the network will compare its own output with the expected output
using an error function and will modify its weights accordingly. To do so one has to propagate the error from
the output layer back to the input layer by using the well-known ”Back-Propagation” algorithm. The general
formula of this gradient computation is described as follows:

OF OE OF oh;

__OFE OFE _ OF OFE _ OF Oa;
n@wij &uij B 6h] 8wij

Oh; ~ da; b,

Wij < Wij

au(j) = (2.1)

The indices 7 and j go through the input dimensions and the neurons respectively, for the current layer.
These equations are the same for each layer with adjustment to the size of the corresponding layer and associated
inputs. §; is a local error term that can be defined for each layer. The n parameter is a learning rate, that must
be fine tuned to allow both fast convergence and precision of the generalization. The final network contains
only one hidden layer with 25 hidden neurons and a learning rate = 7 x 107°. These numbers are found based
on performance criteria (Cornu et. al in prep.).

2.2 Classification with ANN

The problem we want to solve is a YSO classification. Therefore, the output layer is set with one neuron
per class. The expected output for a 3-class example would be in the form of : A: (1, 0, 0), B: (0, 1, 0),
C: (0, 0, 1). Combined with an appropriate activation function it allows one to recover a membership probability
(based on the network knowledge) for each class. We use the common Softmax function : ar = g(hg) =
exp(h)/ (fozl exp(hy)), where k is the number of neurons in the output layer. The result of each neuron
will always be between 0 and 1, and the sum of all the output neurons will always equal 1. The object is
then classified regarding the neuron with the maximum output. An example of results given by the network is:
(0.1, 0.05, 0.85) for a rather clear class C, and (0.3, 0.4, 0.3) for a way more confuse object still considered as
class B. This brings the network in the range of Probabilistic Neural Network (PNN) (Specht(|1990).

3 Data preparation and network settings

3.1 Definition of the classes and labeled sample

We construct our training sample based on a simplified version of the method by |Gutermuth et al. (2009)
(hereafter G09), where only Spitzer data are used. We use the 3.6,4.5,5.8,8 pum bands from TRAC and the
24 pum band from MIPS combined with their respective uncertainty as input features. The G09 method performs
a multi-step extraction based on straight cuts in color-color and color-magnitude diagrams (CMDs), which allows
one to extract objects that are likely contaminants and to recover YSO candidates (Fig. . YSO classes range
from class 0, that are the youngest one, up to class III that are near the main sequence (Allen et al. [2004).
However, using the previous bands we are only able to recover class I (protostars) and class IT (pre-main sequence
with thick disk) YSOs. For the sake of simplicity we adopt only 3 categories in our classification : YSO CI,
YSO CII, and Other/Contaminants.

To get the maximum generalization capacity out of our network we need to ensure the diversity of our
training sample. For that we choose to use well-known and well constrained star forming regions observed with
Spitzer : Orion (Megeath et al.[2012), NGC2264 / Mon OB1 (Rapson et al.[|2014]), and a sample of many regions
nearer than 1 kpc (Gutermuth et al.[2009). This is a major point since different star forming regions cover the
input feature space differently and we want our network to be able to make predictions on various regions. We
define our ”labeled sample” by applying the G09 method on these catalogs (Table .

Deep learning YSO classification 75

. Remain :

Class Il Remain :

31 Shock Class I(P)

Emission

[3.6] - [4.5]
[4.5] - [5.8]

[4.5]-[5.8]
-
[3.6]-[5.8]

SAH Aper.-
Contam. * .

galaxies| PAH galaxies

-2 0 2 4 0 2 4 6 -2

Fig. 1. Usual CMDs used for this classification. Retrieved class II candidates in green, class I candidates in red and
others in blue for the Orion cloud.

Dataset Pre-selection Detailed contaminants Output classes

Total Selected Gal. AGN Shocks PAH Stars YSO CI YSO CII Other
Labeled sample 311407 29074 522 1448 34 89 21799 784 4396 23897
Test 5377 104 278 6 17 4359 82 531 4764
Train ~;: 0.5 0.7 0.05 0.15 4.0 1.0 6.3
Train 6286 331 463 27 70 2648 662 2085 3539

Table 1. Result of the application of our simplified G09 method. The third category of columns give the labels in use
in the learning phase with the last ”Other” column being the sum of all the detailed contaminants. The bottom lines
shows the test and training sets distribution, along with the ~; corresponding values for the train set.

3.2 Data separation : training and test sets

Most of the labeled dataset must be used for the learning process (training set), but we also need to keep aside
a smaller part of it to assess the quality of the prediction of our network with objects it has never seen before
(test set). This test set must be as representative as possible of the true problem we want to solve. It means
that it must preserve observational proportions. Without this precaution, the results would only represent a
numerical performance and not the capacity of the network to generalize a problem. We define a parameter 6
so that for each subclass the number of objects kept away in the test set is IV; x 6. For the results in this paper
0 =0.2.

In contrast, the training set does not need to have observational proportions. Actually, re-balancing the
number of objects given for each subclass is a way to force the network to give more representative strength to
some subclass. It is especially important due to the strong dilution of our labeled sample. With observational
proportions, contaminants (especially more evolved stars) would be so numerous than YSOs would be considered
as noise. We then have to reduce the number of contaminants in our training sample, but we can not choose
an equal ratio. Doing so would not take into account that some subclass of contaminants cover a larger input
feature space than the YSOs, or require a more complex separation to be distinguished. Moreover, we need to
keep the majority of our representative strength for the most dominant subclass as they will be the main factor
of contamination of the other classes (as illustrated by the results in Sect. [d). Still, there are no exact best
solutions for those proportions as it depends on what one wants to recover. We choose to put the emphasis
on class I YSO candidates, since they are not recovered by many other methods, but with the objective of
preserving the quality of class II candidates. It means that the number of class I YSOs in the training sample
has to be maximized. The other objects are proportional to the number of class I which defines a proportion
factor ~; for each of them. The proportions we found to provide good results are presented in the bottom of
Table I} More details on this selection in Cornu et al. (in prep.).

4 Results

After the training, we can apply our network on the test set to recover the predicted result for each object for
which we also have the expected answer. But to assess the quality we need a proper way to represent them.
For classification it is recommended to use a Confusion Matrix. It is defined as a two dimensional table with
rows corresponding to the original class distribution (labels/targets), and columns corresponding to the classes
given to the same objects by our network classification (output). The ”recall” represents the proportion of

76 SF2A 2019

Predicted
Class YSO CI YSO Other Recall
= CII CI CII Gal AGN Shock PAH Stars
*E YSO CI 75 3 4 91.5% YSO CI 75 6 0 2 2 2 2
< YSO CII 6 515 8 97.0% YSO CIT 3 515 2 2 4 3 31
Other 8 42 4714 99.0% Other 4 10 101 274 O 12 4327
Precision | 84.3% 92.0% 99.7% | 98.6%

Table 2. Left: Confusion matrix for the test set (observational proportions). Right: Subclass distribution from the
GO09 original attribution for each of the output of the network.

objects from a given class that were recovered as expected and is given at the end of each line. The ”precision”
represents the fraction of correctly classified objects in a class as predicted by our network and is given at the
bottom of each column. And finally a global ” Accuracy” quantity that gives the proportion of objects properly
classified over the total number of objects given at the bottom right corner of the matrix. The corresponding
matrix for our trained network applied on our test set in observational proportions is presented in Table

These results show that we get more than 90% recall on the class I YSO candidates, but also by preserving
a 97% recall on the class IT candidates. The precision drops at 84% for class 1. Looking at the detailed subclass
results in Table [2, we can see that the contamination for class I is mainly due to the confusion with class II,
while contamination for class IT is mainly coming from the more evolved stars that are the vastly dominant class
in the sample. Those results are highly competitive with previous studies (Marton et al.|[2016; Miettinen|[2018)),
especially regarding the precision that is greatly improved, due to our more detailed analysis and management
of the training proportions.

5 Conclusions

We showed that, using a rather simple neural network, we could achieve excellent results on infrared YSO
classification. However, such methods require meticulous preparation of the data and proper understanding of
their generalization biases. Using such a network we aim at providing a wide catalog of Spitzer YSO candidates.
Since our current limitation is the number of YSOs in our sample, we plan to use simulated data to try improving
the current results. More detailed information on this research will be soon available in Cornu et al. (in prep.).

We thank PCMI (Programme National ”Physique et Chimie du Milieu Interstellaire” of CNRS/INSU with INC/INP co-funded
by CEA and CNES) for giving us the opportunity to present this research during their 2019 SF2A session, and for their financial
support through the GALETTE project. D. Cornu acknowledge that this research is done under a PhD funding from the CNES
and the "région Bourgogne Franche-Comté”.

References

Allen, L. E., Calvet, N., D’Alessio, P., et al. 2004, The Astrophysical Journal Supplement Series, 154, 363
Cybenko, G. 1989, Mathematics of Control, Signals and Systems, 2, 303

Grossschedl, J. E.; Alves, J., Meingast, S., et al. 2018, Astronomy & Astrophysics, 619, A106, arXiv: 1808.05952
Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18

Marton, G., Téth, L. V., Paladini, R., et al. 2016, Mon Not R Astron Soc, 458, 3479

McCulloch, W. S. & Pitts, W. 1943, The bulletin of mathematical biophysics, 5, 115

Megeath, S. T., Gutermuth, R., Muzerolle, J., et al. 2012, AJ, 144, 192

Miettinen, O. 2018, Astrophysics and Space Science, 363, 197

Rapson, V. A.; Pipher, J. L., Gutermuth, R. A., et al. 2014, The Astrophysical Journal, 794, 124

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1, ed. D. E. Rumelhart, J. L. McClelland, & C. PDP Research Group (Cambridge,
MA, USA: MIT Press), 318-362

Specht, D. F. 1990, Neural Networks, 3, 109
Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, The Astrophysical Journal Supplement Series, 154, 1

	Introduction
	Deep Learning method
	Deep Artificial Neural Network : Multi Layer Perceptron
	Classification with ANN

	Data preparation and network settings
	Definition of the classes and labeled sample
	Data separation : training and test sets

	Results
	Conclusions

