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Abstract. For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the
age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods
of solar-like stars observed by the NASA mission Kepler. Different methods have been developed to track
rotation signals in Kepler photometric light curves: time-frequency analysis based on wavelet techniques,
autocorrelation and composite spectrum. We use the learning abilities of random forest classifiers to take
decisions during two crucial steps of the analysis. First, given some input parameters, we discriminate
the considered Kepler targets between rotating MS stars, non-rotating MS stars, red giants, binaries and
pulsators. We then use a second classifier only on the MS rotating targets to decide the best data-analysis
treatment.
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1 Introduction

Rotation plays an important role in stellar evolution. For cool main-sequence (MS) dwarfs (G, K and M spectral
type), age may be determined thanks to gyrochronology (Skumanich|1972): surface rotation evolves roughly as
the square root of its age. Even if recent studies suggested that at a given stage of its evolution, the braking of
a solar-like star is reduced (van Saders et al.[2016]), this relation seems to be verified while the stars remain on
the main sequence.

In this work, we use Kepler (Borucki et al.|[2010) photometric light curves obtained with the KADACS
pipeline (Kepler Asteroseismic Data Analysis and Calibration Software, |Garcia et al.[|2011} |Garcia et al.|[2014)).
The KADACS pipeline has been specifically designed to correct for Kepler light curves from instrumental effects
and properly stitch the quarters in an optimized way for asteroseismology studies. We consider different high-
pass filters (20, 55, and 80 days) for the processing of the light curves to be sure that rotation period is not
filtered out. Rotation period is then extracted thanks to a combination of different methods (Global Wavelet
Power Spectrum GWPS, AutoCorrelation Function ACF and Composite Spectrum CS) as described in [Mathur
et al.|(2010)),|Garcia et al.|(2014)), |Ceillier et al.|(2016)) and |Ceillier et al.| (2017)). However, the computed rotation
period may differ from one KADACS filter to another and from one method to another. Dozens of thousands
of stars have to be considered with, until now, no other solution than to use a pre-defined hierarchical decision
tree and make a final visual inspection of the conflicting cases. A machine learning algorithm seems the ideal
tool to make the decision over the stars of our data set. Before performing this analysis and to avoid any bias,
it is nevertheless necessary to distinguish main sequence rotators from other types of targets.

2 Rotators classification
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Fig. 1. From top to bottom - example of Ke-
pler photometric lightcurve analyzed with A27

pipeline (Mathur et al.|[2010), wavelet power

spectrum, autocorrelation function and compos-

ite spectrum. Extracted from [Santos et al.| (sub-|

mitted to ApJ).
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Our set of stars consist of 14,441 M and K dwarfs based on the
Kepler star properties catalog from |[Mathur et al.|(2017), whose
rotation periods have been studied by |[Santos et al.| (submitted to|
. However, the sample can be polluted by red giants (RG),
classical pulsators (CP) or eclipsing binaries. iden-
tified these pollutors by visually checking the light curves. Here,
we propose to use artificial intelligence methods to automatically
detect such pollutions. We train a first random forest algorithm
(with the Python package scikit-learn, [Pedregosa et al.[2011) in
order to identify those different targets. The principle of a ran-
dom forest algorithm is briefly reminded in annex Al. The input
parameters are:

e periods computed by each method, Powps, Pacr, Pcs, and
related control values Hacr, Gacr and Hcg (see Figure
and (Ceillier et al.|[2017| for further explanation);

e photometric activity proxy Spn (Garcia et al|[2010| 2014;
Mathur et al.|[2014));

e FliPer values (see Bugnet et al.| 2018 |2019);

o cffective temperature Tog and surface gravity logg from
Mathur et al.| (2017).

Those parameters have been chosen because their values are
directly related to stellar types and rotation properties. Teg and
log g are good parameters to distinguish between red giants and
MS stars. The FliPer metric allows us to help disentangling the
proposed classes of stars attending to their power in the PSD.
Rotation periods computed by the three methods combined with
all the other related parameters (Hacr, Gacr and Hcg) allow
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Importance of each parameter for the classification

Fig. 2. Left panel - classification result for a test set of 200 stars. The algorithm has been trained with 600 stars
that were visually classified before-hand. CP stands for classical pulsator, norot for MS non-rotating star, Prot for MS
rotating star, RG for red giant. The real class of an element corresponds to its column label, the class assignated by the
classifier corresponds to the line label. Accuracy of the classification is 0.895. Right panel : relative importance of each

parameter used for the classification.
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the classifier to decide whether the measured signal corresponds to a rotation period or not. Figure [2] shows
the result of the classification of the test set. Stars are globally well classified, except for some non-rotating
main-sequence stars and red giants with close Teg and logg. On a Tg-log g diagram, those stars would lay in
the subgiants region. Thus, one of the next improvements of the classifier will be to add the possibility for the
algorithm to give a label subgiant.

3 Period determination

A second random forest classifier is trained to determine the best filter to consider (20, 55, 80 days) to retrieve
the most probable rotation period P,ot. We assume that this P, will be given by the wavelet method of the
correct filter. Comparing the best filter choice and the classifier choice gives us an estimation of the classifier
accuracy. Sometimes, even when the classifier choice is not the filter chosen by [Santos et al.| (submitted to|
, the period estimate is approximately the same. If the period differs by less than 10% from the true
period labelled on the training set, we consider that the classifier is right and compute what we call the true
accuracy (e.g. the true accuracy score is given between the ratio of stars with a retrieved period laying between
+10% error according to the right period over the total number of stars). Our 14,441 stars are distributed
between a training set of 12,275 stars (85 %) and a test set of 2,166 stars (15 %). The distribution is randomly
chosen. To check whether it could be responsible for a bias in the training, we compute ten trainings of the
algorithm with different distributions each time. The average classifier accuracy and true accuracy over those
ten runs are respectively 0.936 and 0.979 (see Figure [3|for an example of the training).
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Fig. 3. Left panel: filter-choice result for a test set of 2166 rotating MS stars. The algorithm was trained with 12,275
stars. The total number of stars is 14,441. Classifier accuracy is 0.927. The true accuracy on the period is 0.974. Right
panel: relative importance of each parameter used for the classification. Pgwps, Pacr, Pcs, Hacr, Gacr, Hcs and Spn
values are considered for each filter (20, 55, 80) and consequently subscripted in the legend of the plot.

4 Conclusions

Random forest classifiers prove themselves to be an excellent tool to study stellar rotation properties and allow
us to deal with large datasets. On the two distinct steps of the analysis, we get promising accuracy values of
0.895 for the rotators classification and 0.979 for the retrieval of rotation period. Especially, the classifier seems
particularly efficient to retrieve the filter that leads to the rotation period. However, we still need to improve
the accuracy of the results in the future, especially by using larger data sets. One of the goal of future work
will be to apply the analysis to datasets from other missions like K2 or TESS.
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A1l Random forest classifiers

A random forest algorithm is a useful machine learning tool for classification. Thanks to the training set, the
algorithm is able to grow a forest of decision trees that will then be used to assign a label to new data. A simple
example of decision tree is showed in Figure [4]

Decision trees are built with the following principle. The training data set is split from the root of the tree
according to the value of one of the parameters of the data. Each resulting node gets a Gini score G :

Nelasses
G= Y pex(1—pr) (4.1)
k=1
that quantifies its purity (e.g. the proportion of each class for the data assigned to the node). A Gini score of
0 means that a node is totally pure (i.e. that all the elements assigned to the node have the same class). When
the score of a node is low enough, the splitting stops: the node becomes a leaf that assignates to new data the
label of the dominant class.
In order to choose a split close to the optimal possibility without consuming too much computation time, a
number of possible splits is randomly generated and the best one is chosen over this sample.

Fig. 4. Example of decision tree designed to classify two-parameters data @ = {x1, 22} within two classes y1 and yo.
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