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Abstract. We have been monitoring the metal-poor Population II giant, HD 122563, for radial velocity
variations since 2016 using the SONG telescope on Tenerife. We have detected the global seismic quantity
νmax which provides information related to the stellar parameters. By combining these data with comple-
mentary data, we derive a new precise surface gravity, radius and distance to the star. Our results are
corroborated by using the parallax from Gaia DR2. We present these results and some of their implications.
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1 Introduction

HD 122563 (V=6.2 mag, 14h02m 31.8s, +09◦41′09.95”) is a bright metal-poor [M/H] = –2.4 giant star. As such
it can be observed using many independent methods. It was first referenced in the literature over 50 years
ago (Pagel 1963), however, despite its brightness and interest as a prototype for similar giants in the Galactic
halo, today we still debate some of its most fundamental stellar parameters (for example Creevey et al. 2012;
Casagrande et al. 2014; Karovicova et al. 2018; Collet et al. 2018, and references therein).

Analyses presented in Creevey et al. (2012) (C12 hereafter, their figure 4) and Creevey et al. (2014) (their
figure 3) clearly indicated discrepancies between observations, interpretation and models. The former indicated
that standard evolutionary tracks fail to reproduce the observed position of this star in the HR diagramme
and unreasonable assumptions in some tunable parameters are needed. The latter showed a comparison of
interferometric with spectroscopic analyses of this star’s stellar parameters which hinted towards a potential
problem in log g.

Given the current discrepancies along with the fact that this star is a benchmark for distant metal-poor
giants, we applied to observe this star using the radial velocity instrument on the Hertzsprung telescope in
Tenerife in order to detect oscillations and provide a fresh perspective on this star.

In this work we describe the radial velocity observations of this star (Sect. 2), along with an interpretation
using the asteroseismic scaling relation for log g (Sect. 3). We use the most recent data from Gaia DR2 to test
our analysis, and after some brief comparisons, we summarise our conclusions in Sect. 4.

2 Observations

2.1 New observations

We obtained time series radial velocity observations with the 1-m Hertzsprung SONG telescope from April 2016
to December 2017. The Hertzsprung telescope is a node of the Stellar Observations Network Group (SONG)
located at the Observatorio del Teide. All observations were obtained using an iodine cell for precise wavelength
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Observations Derived Parameters
θ1 [mas] 0.940 ± 0.011 log g [dex] 1.39 ± 0.01
Fbol

1 [erg/cm/s] 13.16 ± 0.36 log gV17 [dex] 1.42 ± 0.01
Teff

1 [K] 4598 ± 41 d [pc] 305 ± 10
νmax [µHz] 0.35 ± 0.01 dV17 [pc] 296 ± 9
π2

GDR2 [mass] 3.444 ± 0.063 dGDR2 [pc] 290 ± 5

Table 1. Properties derived from this work, except for those from 1C12 and 2Gaia Collaboration et al. (2018).

calibration. A spectral resolution of 80 000 and an exposure time of 900s was used throughout. The data were
reduced using the standard SONG pipeline (Andersen et al. 2014; Grundahl et al. 2017). The radial velocity
(RV) time series of 387 data points is presented in Figure 1, left panel and the typical uncertainty on the RV
was found to be in the 11-14m/s range.

We used the Diamonds Bayesian Inference tool (Corsaro & De Ridder 2014) to model the power spectral
density (PSD) of the star. The PSD and the best-fit model are shown on the right panel of Fig. 1, and
incorporates a flat noise component, two Harvey-like profiles to account for granulation-driven signal, and a
Gaussian envelope to model the oscillation power excess (Corsaro et al. 2015). A clear excess of power due to
the oscillations is detected at 3 µHz, this is referred to as νmax. We used the marginal distribution of νmax from
this analysis in our subsequent analysis.
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Fig. 1. Left: Time series radial velocities of HD 122563 for the first year of observations. We have subtracted the mean

radial velocity and the first observation point is at time T0 = 2457509.38158 Julian days. Right: Frequency spectrum

of the time series (grey) with a model for the power excess overplotted in red.

2.2 Literature observations

We use the Teff of HD 122563 from C12. This is in agreement with that derived by Karovicova et al. (2018)
using independent interferometric measurements, Casagrande et al. (2014) using the infra-red flux menthod, and
Heiter et al. (2015) who provide a recommended value based on a compilation of spectroscopic measurements,
see Creevey et al. (2019). As we would like to propagate all of the information from the observations, we use
the reported bolometric flux Fbol and angular diameter θ, where extinction AV = 0.01 mag was assumed.

3 Analysis

3.1 Surface gravity and distance from asteroseismology

The surface gravity of a star can be derived using the so-called asteroseismic scaling relation and is given by
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where fνmax = 1 and νmax� = 3050 µHz in the classic form (Kjeldsen & Bedding 1995) and fνmax 6= 1 where
corrections are proposed. By using the observational data (θ,Fbol,νmax) along with the solar values of log g� =
4.438, Teff� = 5772 K, we performed Monte-Carlo like simulations to derive the stellar parameters (log g, Teff),
using the methods described in Creevey et al. (2019). By using a prior on the mass between [0.80,0.90] we
additionally derived the radius R? and distance d (and consequently the luminosity L?). In Figure 2 the blue
contour lines indicate the density distributions of log g and d from these results. The green contours show
the same results but by setting fνmax = (µ/µ�)1/2(Γ1/Γ1�)1/2, where µ and Γ denote respectively the mean
molecular weight and the adiabatic exponent, see Viani et al. (2017) (V17 hereon) and references therein. The
derived L? and Teff are also shown as the blue error box on the right panel, and for comparison we also show
the values from C12 as the grey box. We indicate a vector in blue which represents the relative change in the
position if we impose AV = 0.08 mag (Lallement et al. 2014).

3.2 Distance and surface gravity from Gaia DR2

We derived d and log g using the same methodology as above, but by using the set (π, θ) and the mass prior,
where π is the parallax from Gaia DR2 (Gaia Collaboration et al. 2018). In Fig. 2 the solution is represented
by the black contours (left) and the black box (right).

As can be seen in both figures, similar solutions are obtained using the independent approaches. log g differs
only by 0.02 – 0.04 dex, and d by less than 1.5σ. Consequently the L? agree also to 1σ (1σ error boxes are
shown on the right panel). In Fig 1 right panel we also show standard evolutionary tracks from the BASTI
models in green (Pietrinferni et al. 2004), and a model from the updated tracks in red (Hidalgo et al. 2018)
using solar-scaled canonical models∗. Using fine-tuned evolution models from the CESAM evolutionary code
(Morel 1997), we could reproduce the observed position but only be reducing the mixing-length parameter by
0.3 from the reference solar value.
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Fig. 2. Left: Density plots of derived distance versus log g using asteroseismology — without (blue) and with (green)

corrections to the seismic relation — and using Gaia DR2 (black) Right: HR diagram showing observational position

of HD 122563 using different input data (blue, black, and grey), along with standard evolutionary models from BASTI

and a tailored CESAM model.

4 Conclusions

• We have detected oscillations in the metal-poor star HD 122563.

• By comparing the distances derived using asteroseismology and that from a parallax from Gaia, we showed
that the scaling relations for surface gravity work in the metal-poor and evolved regime.

• We have derived new fundamental parameters for this star using asteroseismology: log g = 1.39 ± 0.01
and d = 306 ± 9 pc (dGDR2 = 290± 5 pc).

∗α-enhanced tracks from Pietrinferni et al. (2004) are hotter, and those from Hidalgo et al. (2018) are not yet available.
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• By applying corrections to the scaling relations for molecular weight and the adiabatic exponent we derived
values of log g = 1.42± 0.01 and d = 296± 9 pc.

• The new fundamental parameters imply less tension between evolution models although a discrepancy
on the order of 150-200 K still exists. This can be remedied by reducing the mixing-length parameter
by 0.3 compared to solar, but further studies with more realistic physics in these models should also be
addressed.

• Increasing AV could also alleviate some of the problem.

• The new surface gravity implies less tension with 3D models, see e.g. Collet et al. (2018) who suggest
that a lowering of log g in their analysis to alleviate discrepancies between their molecular- and atomic-
species-derived oxygen abundances.

• We continue to collect data from the SONG Hertzsprung telescope. We aim to detect the mean frequency
separation, along with individual frequencies, and a more accurate determination of the width of νmax

(see Yu et al. (2018) who indicate a trend of width versus νmax).

• We also aim to understand the long-term trends seen in the time series, see Fig. 1

• The individual frequencies will be very instructive for improving the theoretical models in the metal-poor
regime.
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