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CLASSIFICATION OF X-RAY SOURCES FOR LARGE X-RAY SURVEYS

H. Tranin1 , N. Webb1 and O. Godet1

Abstract. Serendipitous X-ray surveys have been proven to be an efficient way to find rare objects –
tidal disruption events, galaxy clusters, binary quasars, etc. As X-ray astronomy slowly enters the era of Big
Data, an automated classification of X-ray sources becomes increasingly valuable. I present a revisited Naive
Bayes Classification of the X-ray sources in the Swift-XRT and XMM-Newton catalogues which amongst
other objects identifies different types of AGN, stars and X-ray binaries – based on their spatial, spectral and
variability properties at different timescales and their multiwavelength counterparts. An outlier measure is
used to identify objects of other nature. I show the reliability of the method developed and demonstrate
its suitability to data mining purposes. As an outlook, I introduce how the very small populations in some
object classes can be enlarged using citizen science, with the development of a new platform designed for
the classification of XMM sources by volunteers.
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1 Introduction

Since its beginning in the 1960s, X-ray astronomy has known significant breathroughs pushing its limits in both
sensitivity and angular resolution. To this day, sources detected by Swift-XRT, XMM-Newton and Chandra
facilities are gathered in large X-ray catalogues totalling about 1 million X-ray sources, and most of them remain
unstudied. This ever-growing number of sources illustrates how X-ray astronomy is progressively entering the
era of Big Data. Nevertheless, an automatic, efficient and interpretable classification of X-ray sources adapted
to these large surveys is still to be developed. Such a tool will be of great interest e.g. to perform data-mining
studies in X-ray archives, to send an alert when observing a new rare and exotic object – changing-look AGN
(LaMassa et al. 2015), ultraluminous and hyperluminous X-ray sources (e.g. Farrell et al. 2009), tidal disruption
events (e.g. Lin et al. 2018)... and to enable population studies of such objects. Previous attempts to classify X-
ray sources generally focused on small samples of a few thousand objects, using different classification techniques
such as decision trees (Lin et al. 2012), random forest (Farrell et al. 2015) and exploring other machine learning
methods (Arnason et al. 2020). They classify X-ray sources using their properties such as the location, X-ray
hardness and spectral parameters, X-ray short-term and long-term variability and multiwavelength counterparts,
but never all at the same time. While decision trees are easy to interpret but lack efficiency, machine learning
methods are more accurate but often black-box. In this work – more detailed in Tranin et al. 2021 – we develop
a probabilistic classifier for the Swift and XMM-Newton catalogues, 2SXPS (Evans et al. 2020) and 4XMM-
DR10 (Webb et al. 2020), intended to reach a good trade-off between efficiency and interpretability, and taking
advantage of all the previously mentioned source properties.

2 Method

In order to obtain optimal classification results, we first enriched the X-ray catalogues with additional data:

• We identified the best optical and infrared counterparts for each source, using the bayesian crossmatching
algorithm Nway (Salvato et al. 2018) and catalogues of optical and infrared sources – among other Gaia
EDR3 (Gaia Collaboration et al. 2021) and UnWISE (Schlafly et al. 2019). This enabled the computation
of the X-ray to optical (resp. infrared) flux ratios.
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• We computed the long-term variability as the ratio between the maximum and the minimum flux gathering
all X-ray detections among Swift, XMM-Newton and Chandra observations (Evans et al. 2010).

• We identified the galaxies potentially hosting the X-ray sources using a positional cross-correlation with
the GLADE catalogue (Dalya et al. 2016), containing 2 billion galaxies, their distance and angular size
and rather complete up to 300Mpc.

• We identified known AGN, stars, X-ray binaries (XRB) and cataclysmic variables (CV) by a positional
cross-correlation with catalogues covering these types (notably Véron-Cetty & Véron 2010; Secrest et al.
2015; Kharchenko & Roeser 2009; Liu et al. 2006, 2007; Mineo et al. 2012; Ritter & Kolb 2015.

Last but not least, a sample of sources of sufficient quality was selected following these criteria: having
at least one reasonable detection according to the catalogue quality flags; and having at least two of these
qualities: 1) an optical counterpart, 2) an infrared counterpart, 3) a signal-to-noise ratio greater than 10 or an
acquired spectrum and 4) several X-ray detections. This resulted in a sample representing ∼65% of each X-ray
catalogue, e.g. about 138000 and 371000 sources for 2SXPS and 4XMM-DR10, respectively. In each catalogue,
approximately 19000 AGN, 5000 stars, 500 X-ray binaries and 300 CV are previously identified sources, and
they constitute the training sample. The rest constitutes the test sample to classify.

Category Properties αt

Location
Galactic latitude, Gaia proper motion, Offset of the source to the host galaxy

7.5
nucleus, X-ray luminosity from the host galaxy distance

Hardness Hardness ratios, Exponent of the powerlaw spectral fit 3.2
Variability FX,max/FX,min in a single observation, FX,max/FX,min between all observations 6.0
Flux ratios (Optical) FX/Fb, FX/Fr, (Infrared) FX/FW1, FX/FW2 2.0

Table 1. Source properties used in the classification. αt is the weighting coefficient of the category, fine-tuned to

maximize classification performance.

The method we developed uses the distributions of about 15 source properties (detailed in Table 1 and split
in four property categories) as probability densities to infer the source class. The distribution of each property
and each class was modelled using a kernel density estimation (Sheather 2004) on the training sample. The
result is illustrated in Figure 1 for two properties. Different properties characterizing the same category are
combined by multiplying the likelihoods. The probability of a class C given the source properties is a weighted
product of the likelihoods inferred from each property category, L(t|C), multiplied by a prior representing the
prior proportion of sources of class C (we used 66%, 25%, 7% and 2% for AGN, star, XRB and CV, respectively):

P(C|data) =
P(C)×

(∏
t∈{categories} L(t|C)αt

)1/∑t∈{categories} αt

∑
C∈{classes} P(C)×

(∏
t∈{categories} L(t|C)αt

)1/∑t∈{categories} αt
(1)

where the coefficients αt of each category were fine-tuned to optimize the f1-score (f1 = 2/(1/recall +
1/accuracy)) of the classification on one chosen class, which was XRB in our study. This fine-tuning was
performed by a differential evolution algorithm (Storn & Price 1997) and the coefficients converged towards the
values shown in Table 1. The location and variability information are thus the most discriminant to identify
XRB. Following equation (1), our method is thus a revised version of the Naive Bayes Classifier (Murphy et al.
2006), allowing to compute the probabilities of each class and directly relate them to the values of the source
properties. On top of that, the numerator of this equation depends on the frequency of sources at the same
point of the parameter space, so we used it as an outlier measure (O.M.) which allows us to spot objects with
exotic properties. We then evaluated the performance of the classifier by analyzing the recall and accuracy of
each class in both the training and the test samples.

3 Results

When applied to the training sample, the classifier returned the results detailed in Table 2. Overall, more than
97% of sources are correctly classified, with a particularly good performance on AGN and stars having f1-scores
higher than 0.98. The optimization on X-ray binaries led to great results for this class as well, while CV
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Fig. 1. Distributions of two properties in the reference sample of 2SXPS, and their kernel density estimation. Left:

X-ray to r-band flux ratio. Right: Hardness ratio between soft and medium X-ray bands.

AGN Star XRB CV
→AGN 19515 82 25 191
→Star 44 4628 3 27
→XRB 140 18 326 17
→CV 9 9 2 124

recall (%) 99.0 97.7 91.6 34.5
precision (%) 97.0 98.6 90.7 85.5

f1-score .980 .981 .911 .492

AGN Star XRB CV
→AGN 18373 25 46 149
→Star 15 6197 10 12
→XRB 80 12 479 10
→CV 4 0 8 81

recall (%) 99.5 99.4 88.2 32.1
precision (%) 97.2 98.9 93.7 84.6

f1-score .983 .991 .909 .466

Table 2. Confusion matrices of the classifier applied to the 2SXPS (left) and the 4XMM-DR10 (right) training samples.

The precision values are corrected for matching prior proportions.

are the most difficult to retrieve notably because of their diverse nature and the absence of detailed variability
information in the enhanced catalogue. A detailed analysis of the XRB false positives revealed that most of them
fall in one of these situations: they are an AGN in the background of a galaxy, a particularly variable AGN or
star or their multi-instrument light-curve is not properly calibrated and thus shows a spurious variability. This
diagnosis was easily obtained by looking at the sources’ “probability tracks”, a classification product showing
the likelihoods of each class as given by each property (Figure 2).

According to the classification, the test sample is composed of about 80% of AGN, 17% of stars, 3% of
XRB and 0.5% of CV. These proportions are in good agreement with the priors. A manual analysis of 200
sources revealed that more than 95% of AGN and stars were correctly classified, while sources classified as X-ray
binaries contain about 50% of false positives because of the presence of objects of other nature and the reasons
cited above. Enlarging the training sample is thus important for future progress, in order to refine XRB and CV
types and represent rarer classes. Sources with a large outlier measure were also analyzed, showing a prevalence
of spurious sources but also peculiar AGN and stars, XRB candidates, galaxy clusters and some transients.

Fig. 2. 2SXPS J125801.1+013431, the central X-ray source of NGC 4845, known to host an AGN which underwent a

tidal disruption event (Niko lajuk & Walter 2013). This source was wrongly classified as XRB. Left: PanSTARRS image

of the galaxy and location of the source. Middle: Probability track of the source, showing the role of the variability

ratio in the XRB probability. Right: X-ray light-curve from Swift and XMM detections.
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4 Prospects

We developed a probabilistic, interpretable and efficient classification adapted to large X-ray surveys. After
enhancing the Swift and XMM-Newton catalogues, we were able to classify more than 50% of their unknown
sources. About 85-90% of these classifications proved to be reliable from a manual analysis, and each clas-
sification was made easy to interpret thanks to the classification products. Further research will address the
applications of such a classification, and making a dynamic classification adapted to time-domain astronomy.

Besides, while AGN and stars are very well-classified, XRB and CV still show a lower performance which is at
least partly due to their sparse and diverse training sample. In this context, enlarging the training samples e.g.
using a citizen science approach is increasingly valuable. Citizen science takes advantage of the wisdom of crowds
to ensure accurate classifications of samples as large as ∼100000 objects. Such experiments also proved to often
lead to serendipitous discoveries. We thus launched CLAXSON (http://xmm-ssc.irap.omp.eu/claxson), a
citizen science platform on which every volunteer can classify unknown X-ray sources after a discovery phase
(quizz) and a training phase (classification of known sources and feedback). In order to classify a source, the
user can examine its multiwavelength images and (when available) its spectrum and its short-term and long-
term light curves. To this day, about 1000 unknown objects were classified more than 10 times thanks to 50
volunteers, who have a mean success rate of 82% in their classifications. Future work will therefore address the
results of this experiment and evaluate its benefit in the field of X-ray classification.

This research has made use of several tools and services: Aladin sky atlas (https://aladin.u-strasbg.fr/AladinLite/) developed
at CDS, Strasbourg Observatory, France (Bonnarel et al. 2000; Boch & Fernique 2014) ; TOPCAT version 4.8 (Taylor 2005).
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