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CLASSIFICATION OF COSMOLOGICAL MODELS FROM THE INTERNAL
PROPERTIES OF DM HALOS BY USING MACHINE LEARNING
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Abstract. We are interested in detecting the cosmological imprint on properties of present dark matter
halos by using Machine Learning methods. We analyse the halos formed in Dark Energy Universe Simula-
tions using several dark energy models (ACDM, Quintessence Ratra Peebles), whose parameters were chosen
in agreement with both CMB and SN Ia data. Their resulting halos are thus extremely close from one cos-
mological model to another. However, we have shown that machine learning techniques can be implemented
to determine the cosmological model in which each halo was formed: we associate to each present day halos
from ACDM and RP CDM ellipsoidal mass and shape profiles, defined to efficiently keep track of the matter
distribution anisotropies and, then, we experimentally show that those quantities allow a properly trained
learning device to find the dark energy model of the Universe within which these halos have grown. Training
our device on 40,000 halos of 10" and 10'* solar masses, we can correctly classify more than 70% of the
halos in the test set. We also study the misleading ML methodological biases, ”Clever Hans effects”, and
the way to fix them.

Keywords: dark energy, machine learning, decision tree, numerical simulations, dark matter halos

1 Introduction

Dark Energy Universe Simulations (Alimi et al.|2010; Rasera et al[2010; |Alimi et al.[[2012; Reverdy et al.[[2015)
is a set of high performance N-body cosmological simulations. From one simulation to another, several dark
energy models are assumed, e.g. the dynamical Ratra Peebles (RP) CDM model and the fiducial ACDM. We
will use in this proceedings the 648 h~! Mpc simulation containing N = 2048 particles. For each cosmological
model, all cosmological parameters are chosen to form a CMB (Spergel et al|2007) and SN Ia (Kowalski et al.
2008) compatible n-uplet. As a consequence, we study only realistic models (Alimi et al.|[2010), which are
extremely close one to each other - any halo of the ACDM Universe strongly overlap its RPC DM counterpart.
Therefore, natural questions emerge: is there any cosmological imprint in the difference between the
halos of the two Universes? In other words, does the internal structure of halos embed cosmological
information ? Our goal is to extract information about the cosmology (dark energy model) from the matter
distribution and the dynamical state of the simulated halos. Whereas a conventional objective would consist
in exhibiting a mean behaviour, i.e.a quantity whose the average value on a large population simulated halos
change significantly (more than 1o) with the dark energy model, our objective is here more predictive: we want
to infer the cosmology from only the internal properties of each individual halo. To be more specific, each
halo is described by a common set of chosen quantitative attributes; we then aim at training an
Al to associate to each set of attributes, the dark energy model of the Universe in which the
corresponding halo has grown. This is a classification task. Furthermore, by changing the set of chosen
attributes, we will select those that are the most significant from a cosmological point of view.

2 Halo properties computation

For a correct description of a halo, it is necessary to capture the spatial distribution of the matter in it, that
is to say its profile. Because DM halos are triaxial ellipsoids rather than isotropic (Despali et al.|2016), a
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thorough profile characterisation requires local density measures - The parameter free Delaunay Tessellation
Field Estimator (Cautun & van de Weygaert|2011)) provides the local density ¢ at each particle locus. That
allows to remove subhalos. For each density d, in a sequence of pre-chosen ”points of measure” (J,),, we consider
the &, isodensity shell S, = {k | \J(%k) — 1] £ 0.1} and we observe (Jing & Suto|2002)) that it is approximately an
ellipsoid (&,) clearly non spherical. “Tts parameters are computed through the diagonalization the mass tensor of
the particles forming the shell S,: (Mga)lg i j<3 = (xixj)s, — (Ti)s,(z;)s,. Finally, in each fitted ellipsoid &,,
one computes the quantities that will describe halo’s structure and its dynamics (the set of attributes) namely
the enclosed mass M, (which is thus a multiple of the particle mass m,), the length of &, axis, the velocity
dispersion ¢ .... and so on (Koskas & Alimi 2021)).

3 Machine learning

Our objective is now to train an Al to associate to a sequence (M, E,,0Y ,...), the dark energy model (fiducial
or RP) of the Universe in which the corresponding halo was formed. We use for this propose an ensemble
of decision trees , aggregated by gradient boosting (Friedman||2002). However, the use of Machine Learning
algorithms induces specific subtle spurious effects. As, we use N-body simulations where all the particles have
the same elementary mass m, and because we have chosen realistic models, €2,,, and thus m, are different from
one dark energy model to another. Now, the M,’s belong to mfPN or mz/}N, which do not intersect. So, if the
machine detects that all first-cosmology halo masses in the train set are multiple of the same elementary mass
(that the machine should determine) and that all second-cosmology halo masses are multiple of another base
mass, then the machine will also be able to classify the halos of the test set (simply by looking if their masses are
multiple of m;} or mgp ). In other words, data contain cosmological information of purely arithmetical nature,
which would not be reproduced in a real Universe (continuous fields). It is a typical Clever Hans effect. This
kind of effects has been carefully hunted and corrected in order to obtain physically reliable
results. See (Koskas & Alimi|2021)) for the way we altered the train set to avoid it.

4 Results and conclusions

Once trained, our Al can be tested individually on each halo in the test set and determines the cosmological
model with a 71% probability of success. This result is essentially achieved by using ellipsoidal profile approach
rather than the spherical one, and only with mass (M), and shape attributes (£,). Those are therefore the most
cosmologically impregnated properties of the halos. In|Koskas & Alimi| (2021) we further discuss the required
precision on the attributes for the Al to be predictive. We also explain why velocity dispersion measurements
are not sufficient to classify the halos.

As a conclusion, it is possible to read in the halo structure the dark energy model. To do so, one has to finely
describe the mass profile through local density computation and ellipsoidal approximation for iso-densities.
Supposing isotropy when determining the mass profile considerably lowers the result. Also, it is crucial to
understand how the resulting engine works. In particular, one has to check that the classification is achieved
only by physical means, ignoring any cosmological clue coming from the numerical nature of the simulation,
so that the engine would work for a real Universe.
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