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Abstract. Primordial non-Gaussianity of the local type induces a scale-dependent bias in the clustering
of rare objects. Calibration with numerical simulations is essential to measurements of galaxy/quasar power
spectra that aim to put constraint on the amount of primordial non-Gaussianity. We compare theoretical
predictions with the outcome of large N-body simulations evolved from Gaussian and non-Gaussian initial
conditions. At low wavenumber k < 0.03 hMpc−1, the theory and the simulations agree well with each
other for haloes with linear bias b(M) > 1.5. Including a scale-independent bias correction improves the
comparison between theory and simulations on smaller scales where the k-dependent effect becomes rapidly
negligible. We place limits on the size of the cubic order correction using a compilation of large-scale
structures data.

1 Introduction

A wide class of inflationary scenarios lead to non-Gaussianity of the local type, i.e. which depends on the local
value of the primordial curvature perturbation (Here and henceforth, the usual Bardeen potential in matter-
dominated era). In these models, deviation from Gaussianity can be conveniently parametrised by the nonlinear
coupling parameters fNL and gNL through the relation

Φ(x) = φ(x) + fNLφ(x)2 + gNLφ(x)3 , (1.1)

where φ(x) is an isotropic Gaussian random field whose power spectrum is a power-law Pφ(k) ∼ kns−4. Note
that the quadratic correction is small since curvature perturbations are typically O(10−5).

The cosmic microwave background (CMB) and large scale structures offer two different routes to test for
the presence of primordial non-Gaussianity. The main advantage of the CMB resides in the fact that the
observed spherical harmonics coefficient am

l are a linear superposition of the primordial curvature perturbations
(weighted by the radiation transfer function). Therefore, any non-zero three-point and/or higher correlation
function of Φ(x) is directly mirrored in the corresponding statistics of the primary temperature anisotropies.
Thus far, analysis of the CMB three-point function indicates that the data is fully consistent with Gaussianity,
with −9 < fNL < +111 at 95% C.L. (Komatsu et al. 2009).

Unlike the CMB, nonlinear gravitational evolution of large-scale structures can significantly contaminate the
signal due to primordial non-Gaussianity. However, causality implies that this contamination decays rapidly
as one goes to large distances. Another important difference with the CMB is that large-scale structures are
traced by galaxies etc. which are biased relative to the matter distribution (since these preferentially form in
overdense regions). As a consequence of this bias relation, high order statistics of the matter density field (such
as the three-point function) can project onto low order statistics of biased tracers (such as the power spectrum).
In particular, Dalal et al. (2008), Matarrese & Verde (2008), Slosar et al. (2008), showed that the three-point
function for the local quadratic coupling fNLφ2 induces a scale-dependent bias ∆bκ(k, fNL) in the large-scale
power spectrum of biased tracers,

∆bκ(k, fNL) = 3fNL [b(M) − 1] δc

ΩmH2
0

k2T (k)D(z)
, (1.2)
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where b(M) is the linear bias parameter, H0 is the Hubble parameter, T (k) is the matter transfer function
normalised to unity as k → 0, D(z) is the growth factor normalised to (1+ z)−1 in the matter era and δc ∼ 1.68
is the present-day (linear) critical density threshold. Slosar et al. (2008) applied this relation to constrain
the value of fNL using a compilation of large-scale structures data and found limits comparable to those from
WMAP5, −29 < fNL < +69. Still, in order to fully exploit the potential of forthcoming galaxy surveys,
theoretical predictions for the non-Gaussian bias need to be tested against the outcome of large numerical
simulations. Here we study the impact of local non-Gaussianity on the bias of dark matter haloes.

2 N-body simulations

Investigating the scale-dependence of the halo bias requires simulations large enough so that many long wave-
length modes are sampled. At the same time, the simulations should resolve the dark matter haloes hosting the
surveyed objects, i.e. luminous red galaxies (LRGs) or quasars (QSOs), so that one can construct halo samples
whose statistical properties mimic as closely as possible those of the real data.

We utilise a series of large N-body (collisionless) simulations of the ΛCDM cosmology seeded with Gaussian
and non-Gaussian initial conditions. We adopt the standard (CMB) convention in which the Bardeen potential
Φ(x) is primordial, and not extrapolated to present epoch. We run five sets of three 10243 simulations, each of
which has fNL = 0,±100, with the N-body code GADGET-2 (Springel 2005). We use the same Gaussian random
seed field φ in each set of runs so as to minimise the sampling variance. The box size is 1600 h−1Mpc such
that the particle mass of these simulations is 3.0 × 1011 M⊙/h, enough to resolve haloes down to 1013 M⊙/h.
Dark matter haloes are identified using the MPI parallelised version of the AHF halo finder which is based on
the spherical overdensity (SO) finder developed by Gill, Knebe & Gibson (2004).

We interpolate the dark matter particles and halo centres onto a regular cubical mesh. The resulting dark
matter and halo fluctuation fields were then Fourier transformed to yield the matter-matter, halo-matter and
halo-halo power spectra Pmm(k), Pmh(k) and Phh(k), respectively. These power spectra are measured for various
halo masses and redshifts, covering a range of statistical properties corresponding to those of the available galaxy
or quasar populations with different luminosities and bias. Note that these quantities are computed on a 5123

grid, whose Nyquist wavenumber is sufficiently large (≈ 1 hMpc−1) to allow for an accurate measurement of
the power in wavemodes of amplitude k <

∼
0.1 hMpc−1. The halo power spectrum is corrected for the shot-noise

due to the discrete nature of dark matter haloes, which we assume to be the standard Poisson term 1/n̄. Yet
another important quantity is the linear halo bias b(M) which must be measured accurately from the Gaussian
simulations as it controls the magnitude of the scale-dependent shift (see equation 1.2). We use the ratio
Pmh(k)/Pmm(k) as a proxy for the halo bias since it is less sensitive to shot-noise.

In order to quantify the effect of non-Gaussianity on the halo bias, we consider the ratios

Pmh(k, fNL)

Pmh(k, 0)
− 1 =

∆b(k, fNL)

b(M)
(2.1)

Phh(k, fNL)

Phh(k, 0)
− 1 =

(

1 +
∆b(k, fNL)

b(M)

)2

− 1 .

Although Pmh is less affected by discreteness, it is important to measure the effect in the auto-power spectrum
Phh of dark matter haloes since the latter gives the strongest constraint on fNL.

3 Non-Gaussian bias shift

At the lowest order, there are two additional, albeit relatively smaller, corrections to the halo bias which arise
from the dependence of both the halo number density n(M, z) and the matter power spectrum Pmm on the
nonlinear parameter fNL. These terms must be included in the comparison with the simulations (Desjacques,
Seljak & Iliev 2009).

Firstly, assuming the peak-background split holds, the change in the mean number density of haloes induces
a k-independent shift

∆bI(fNL) = −
1

σ

∂

∂ν
ln [R(ν, fNL)] (3.1)



Primordial non-Gaussianity in the halo bias 209

where ν = δc(z)/σ(M) is the peak height at mass scale M and R(ν, fNL) is the fractional correction to the
Gaussian mass function. Notice that ∆bI(fNL) has a sign opposite to that of fNL, because the bias decreases
when the mass function goes up (cf. left panel of Fig. 1).

Secondly, primordial non-Gaussianity affects the matter power spectrum as positive values of fNL tend to
increase the small-scale power. For fNL ∼ O(102), the magnitude of this correction is at a per cent level in
the weakly nonlinear regime k <

∼
0.1 hMpc−1. We find that leading order perturbation theory (PT) provides an

excellent description of the effect over the wavenumbers of interest, k <
∼

0.1 hMpc−1 (cf. left panel of Fig. 1).
Summarising, local non-Gaussianity adds a correction ∆b(k, fNL) to the bias b(k) of dark matter haloes that

can be written as

∆b(k, fNL) = ∆bκ(k, fNL) + ∆bI(fNL) + b(M)βm(k, fNL) (3.2)

at first order in fNL, where βm(k, fNL) = Pmm(k, fNL)/Pmm(k, 0) − 1. The right panel of Fig. 1 illustrates
the relative contribution of these terms for haloes of mass M > 2 × 1013 M⊙/h identified at redshift z = 0.5.
The data points are obtained from measurements of the cross-power spectrum in the N-body simulations. The
solid curve shows the total non-Gaussian bias ∆b(k, fNL). Considering only the scale-dependent shift ∆bκ leads
to an apparent suppression of the effect in simulations relative to the theory. Including the scale-independent
correction ∆bI considerably improves the agreement at wavenumbers k <

∼
0.05 hMpc−1. Finally, adding the scale-

dependent term b(M)βm further adjusts the match at small scale k >
∼

0.05 hMpc−1 by making the non-Gaussian
bias shift less negative.

Fig. 1. Upper left: Fractional deviation from the fiducial Gaussian mass function. Different symbols refer to different

redshifts as indicated. Error bars denote Poisson errors. Lower Left: Non-Gaussian fractional correction to the matter

power spectrum, βm(k, fNL) = Pmm(k, fNL)/Pmm(k, 0) − 1, that originates from primordial non-Gaussianity of the local

type. Results are shown at redshift z = 0 and 2 for fNL = ±100. The dotted curves indicate the prediction from a

leading-order perturbative expansion. Right: Non-Gaussian bias correction for haloes of mass M > 2 × 1013 M⊙/h

extracted from the snapshot at z = 0.5 (filled symbols). The solid curve represents our theoretical model eq. (3.2). The

dashed, dotted-dashed-dotted and dotted curves show the three separate contributions that arise at first order in fNL.

Our theoretical scaling agrees very well with the data for k <
∼

0.05 hMpc−1.

If haloes and dark matter do not trace each other on large scales, i.e. if there is stochasticity, then analyses
based on the auto- and cross-power spectrum may not agree with each other. While models with Gaussian
initial conditions predict little stochasticity on large scales, this has not been shown explicitly for models with
non-Gaussianity. We find that measurements of the non-Gaussian bias correction obtained with the halo-halo or
the halo-matter power spectrum are in a good agreement with each other, suggesting that non-Gaussianity does
not induce stochasticity and the predicted scaling applies equally well for the auto- and cross-power spectrum.
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For highly biased haloes (b(M) >
∼

1.5), our results indicate that the simulated non-Gaussian bias converges

towards the theoretical prediction for k <
∼

0.03 hMpc−1. At smaller scales, the effect depends strongly on scale-
independent bias. If we include this contribution using analytic calculation (equation 3.1), the suppression
relative to theory is much smaller and in some cases goes in the opposite direction. Still, one could argue that
scale-independent bias cannot be identified from the data alone, so one should fit for it and include it in the
overall bias, as was done in Slosar et al. (2008). In this case the agreement between theory and simulations
is improved further. For the halo samples with b(M) <

∼
1.5 there is some evidence that the actual bias exceeds

the theory on all scales. Therefore, the proposed eq. (3.2) does not appear to be universal, so care must be
exercised when applied to the actual large scale structure data.

4 Constraints on gNL (trispectrum)

Thus far, we have only considered the effect of the quadratic term fNLφ2 on the clustering of dark matter haloes.
However, in inflationary scenarios such as the curvaton model, a large cubic correction gNLφ3 can be produced
while simultaneously keeping the quadratic correction small. Therefore, we have also explored the effect of the
cubic term on the halo bias (Desjacques & Seljak 2009). Simulations of non-Gaussian models with gNL = ±106

and with properties similar to those of the aforementioned simulations are used to calibrate the theory. The
k-dependence of the bias correction ∆bκ(k, gNL) measured from the auto- and cross-power spectrum of haloes,
is similar to that found in fNL models, but the amplitude is lower than theoretical expectations. Using the
compilation of large-scale structure data of Slosar et al. (2008), we obtain for the first time a limit on gNL of

−3.5 × 105 < gNL < +8.2 × 105 (at 95% CL) (4.1)

For the limits obtained here, ∆bI should be much smaller than b(M) and can thus be ignored. Note also that,
whereas the non-Gaussian bias scales as D(z)−1 in fNL models, the redshift dependence is stronger for gNL non-
Gaussianity, ∆b(k, gNL) ∝ D(z)−2, so one can achieve relatively larger gains from measurements of high redshift
tracers. We expect our limit to improve by 1-2 orders of magnitude with future large-scale structures data. In
fact, the extent to which one can tighten the observational bounds will mainly depend on our ability to minimise
the impact of sampling variance caused by the random nature of the wavemodes, and the shot-noise caused by
the discrete nature of the tracers. By comparing differently biased tracers of the same surveyed volume (Seljak
2009) and suitably weighting galaxies (Seljak, Hamaus, & Desjacques 2009), it should be possible to circumvent
these problems and considerably improve the detection level.
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