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Abstract. In this work we study the Vishniac instability with the HYDRO-MUSCL2D code. In the
framework of supernova remnants, we realize numerical simulations of a shock front perturbed by a sinusoidal
disturbance in the plane-parallel geometry. We vary the wavenumber of the perturbation to understand its
effect on the evolution of the instability. For the perturbative wavenumber range of this geometry, we
observe an oscillation of increasing amplitude like the Vishniac overstability. Furthermore we obtain the
similar dependence of the numerical and theoretical models between the growth rate of the instability and
the wavenumber.

1 Introduction

The Vishniac instability discovered analytically in the context of radiative shocks is not well known nowadays.
With numerical simulations, we want to explore the parameters allowing the triggering and the growth of the
instability and we finally want to go deeper in the understanding of this process. In the astrophysical context,
the Vishniac instability is invoked to explain the fragmentation of the shock front of supernova remnants (SNRs)
when the blast wave resulting from a star explosion evolves in the radiative phase and particularly in the Pressure
Driven Thin Shell (PDTS) stage. The linear regime of the instability was theoretically studied by Vishniac in
1983 (see also Cavet et al. 2008) and was continued to a less constraining approximation by Ryu & Vishniac
(1987) and Vishniac & Ryu (1989). In SNRs, the action of instabilities on the resulting morphology of these
objects is confirmed by observations (Mac Low & Norman 1999; Raymond 2003). But the role of the Vishniac
instability is not yet proved in these astrophysical objects. In laboratory astrophysics, several experiments
based on laser facilities have been achieved on this subject (Grun et al. 1991; Edens et al. 2007) and they
have enabled to produce a hydrodynamic instability on the radiative shock front. But the discrepancy between
the experimental and the analytical growth rate of the instability does not allow the probate of the existence
of the instability in the laboratory. To improve the understanding of the Vishniac instability, we perform a
numerical study of a perturbed thin shell of shocked matter propagating under the strong shock regime in
plane-parallel geometry ((y, x) inverse coordinates). The instability starts when a small perturbation appears
on the thin shell creating a mismatch between the ram pressure and the thermal pressure which push on both
sides of the thin shell. The consequence of this mismatch is the establishment of opposite matter flows along
the thin shell i.e. in the transverse direction of the shock front propagation. A crucial point of numerical
simulations of the instability is to correctly introduce the perturbation on thin shell. In a previous paper (Cavet
et al. 2009) we have introduced perturbative spots on the density to trigger the instability but this method
does not allow to easily control the wavenumber of the perturbation. In the present approach, we introduce a
sinusoidal perturbation on the thin shell defined by a wavenumber l and an amplitude A. To explore a part of
the parameters leading the instability, we set the shock front velocity Vs (along the x axis) and A and we vary l
to analyze the effect of the perturbative wavenumbers on the growth of the instability. Furthermore, we study
the Vishniac overstability on short time evolution of the simulations. The overstability, predicted by Vishniac
(1983), consists in obtaining an oscillation of increasing amplitude on the fluid parameters (density ρ, velocity
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v, and pressure p) and on the spatial parameter x. We observe this process on the thin shell displacement until
unfortunately the numerical carbuncle instability (Quirk 1994) perturbs the system. Finally, we present the
numerical results of the growth of the shock front density and we compare the growth rate of the instability to
the analytical one.

2 Numerical simulations

To realize numerical simulations of a perturbed shock front we use the HYDRO-MUSCL2D code developed by
our team (Cavet et al. 2009). We realize the simulations of the instability in two steps. Firstly we create an
unperturbed isothermal (radiative approximation) shock provided by the strong explosion model adapted to
the plane-parallel geometry. In order to simulate the strong and punctual explosion, we introduce an energy
E1 = 1044 J in a strip of cells. The simulation produces three different media: the internal region included
between the cell strip of the explosion and the internal side of the evolving thin shell (medium 1), the thin shell
itself included between its internal side and the shock front (medium 2), and finally the region representing the
interstellar medium (medium 3) where the density is ρ3 = 10−20 kg.m−3. The adiabatic indices are set for the
three media at γ1 = γ3 = 5/3 and γ2 = 1.1 where the value of γ2 reports the energy loss by radiation in an
optically thin radiative approximation. We let evolve the self-similar shock front until it reaches a preselected
shock front velocity Vs. This settled parameter have an effect on the growth of the instability but its effect
is not predicted by the theory and then Vs can take values on a large domain. The only constraint is that
the velocity has to be sufficient to preserve the strong shock regime (i.e. the shock front compression equal to
(γ2 + 1)/(γ2 − 1)). Nevertheless the choice of the value of Vs is not easy. The self-similar law for the PDTS
phase gives a velocity range Vs ∼ 150 − 200 km s−1. But observations of the radiative Crab Nebula SNR give
a higher velocity Vs ∼ 300 km.s−1 (Sankrit & Hester 1997). Considering different reasons, we have chosen in
this study Vs = 470 km.s−1.
Secondly we introduce a sinusoidal perturbation on the previous unperturbed thin shell to trigger the instability
as Blondin & Marks (1996) in their study of the Non linear Thin Shell Instability. We chose to perturb the
shape of the shock front and not the fluid parameters differently of Mac Low & Norman (1993). The interest of
our approach is its linkage property with the analytical model of Ryu & Vishniac (1987), thus we can retrieve
the same optimal wavenumber. We can directly control the sinusoidal perturbation by two parameters: the
wavenumber l and the amplitude A. In this study, we vary only l. The theoretical analysis gives the instable
wavenumber range for the plane-parallel case (Ryu & Vishniac 1987): l = [4 − 26] with a maximal growth rate
for l = 14. Then we set the amplitude A ∼ 8% of the wavelength λ (where λ = 2πxs/l) to initialize the linear
regime of the instability but in a future work we will study the forced nonlinear regime where A > 10% of λ.
The results of simulation shown in Fig. 1 are realized with the more perturbative wavenumber l = 14 (i.e. the

Fig. 1. Evolution of the Vishniac instability in plane-parallel geometry for l = 14, A = 8% of λ and Vs = 470 km.s−1:

snapshots of a zoom of the density map in 10−19 kg.m−3. The shock front propagates according to the x axis (vertical

direction) and the origin of this axis corresponds to x0 = 42 × 1015 m. On the zoom, the evolution of one valley and

two hills is observable. The shock front matter moves from the hills to the valley and vice-versa. The empty bubble

appearing at t = t0 + 103 years are due to the numerical carbuncle instability.
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optimal wavenumber). In this simulation we have introduced the perturbation at the SNR age t0 ∼ 4 × 103

years and we have let evolve the instability during ∆t = 104 years. At the first step of the evolution (t = t0+103

years), the process predicted by the theoretical model is acting on the thin shell: diminution of the density on
the hills (orange in the density scale) and growth of density in the valleys (dark red) due to the action of a
transversal flow moving the matter from the hills to the valleys. This flow of shoked gaz is the strongest at the
maximum deflection point i.e. the middle point between a hill and a valley. At this moment, the maximum
of density in the valley is ρvalley = 1.08 ρs,init where ρs,init is the initial density on the shock front i.e. the
unperturbed shock front density. The spatial perturbation triggers the density variation. Then at t = t0+2×103

years, we already observe the deformation of the valley structure on the x axis indicating a change of the matter
motion in the thin shell. At this time we remark a second linked effect which is the taking up of the lagging of
the valleys. Indeed the positions of the valleys are close to the position of the hill. This evolution of the initial
sinusoidal perturbation of the thin shell is the Vishniac instability. We understand better this phenomenon at
t = t0 + 3 × 103 years when the transversal flow changes of direction. Indeed the valley matter is divided in
two clumps, then the valleys lose their matter and become hills and vice-versa. This oscillating process of the
thin shell displacement and the fluid parameters is the overstability predicted by Vishniac (1983). More latter
and until the end of the simulation, we observe a numerically perturbed phase with transformation of numerical
oscillations in empty bubbles with triangular structures due to the numerical carbuncle instability acting on
perturbed shock front in this geometry (Quirk 1994).

3 Discussion of the results

After this first morphological study, we focus ourselves on the first phase of the instability where we have only
small numerical problems. We let evolve the perturbed shock front during ∆t = 2 × 103 years. During this
period, we want to understand how the wavenumber l acts on the evolution of the fluid parameters by calculating
the growth rate s of the instability and by comparing the numerical growth rate law s(l) with the analytical
one. First, we make a cut on the map density following the shock front to see the parameter evolution. We
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Fig. 2. Evolution of a density cut following the shock front (cut alongt the y axis, density in 10−19 kg.m−3). Each curves

correspond to one time and the time step is dt = 0.2 × 103 years . The density is smoothed to remove the numerical

oscillations present on hills and valleys.

visualize in Fig. 2 one part of this cut (two hills and one valley) to study the density variation at the center of
the valley (at y = 95× 1015m in Fig. 2). At this position, we see the growth (in red) and the decrease (in blue)
of the density due to the transversal motion of the matter in the thin shell and we can calculate the density
perturbation δρ = |ρpert − ρs,init| where we choose ρs,init constant and given by the straight line at t = 0,
ρs,init = 1.54 × 10−19 kg.m−3. The theoretical analysis gives the variation of the density perturbation with
time t: δρ ∝ Kts where s = sr + i si is the complex growth rate and K a constant including the self-similar
profile of the unperturbed density. With a χ2 fitting, we find the growth rate of the instability for several
wavenumbers visualized in Fig. 3. Comparing with the analytical model, we do not find the same value of the
growth rate but we observe the same dependence between the growth rate and the wavenumber: the optimal
wavenumber is l = 14. But we have large error bars in our data due to the small size of the sample and due to
the numerical noise created by the carbuncle instability. We note that not all our simulations realized with a
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Fig. 3. Real part of the growth rate sr versus the wavenumber of the perturbation l. We observe a similar law with the

analytical model.

specific wavenumber are included in this plot due to some initialization problems in these simulations preventing
a normal evolution of the density variation in our measurement point, the valley center. This fact points out
that the measure of the density in only one point is not the better parameter to determine the growth rate. In
future works we will use the mass of a hill and a valley, i.e. the density integrated over a half period of the
wavelength λ, to find s.

4 Conclusion

In this numerical study, we have obtained the Vishniac overstability. We have observed the oscillation of the
thin shell displacement and we have found numerically the same theoretical law between the growth rate and the
wavenumber of the perturbation. But in this work we have tested only one part of the instable parameters and
we need to purchase this study to understand the effect of the other variables on the growth of the instability,
specially in cylindrical and spherical geometries where the action of the carbuncle instability is reduced on the
axis of the thin shell. In an other domain, we have two experimental projects at short and long terms. In
a close future, we propose in collaboration with Edens et al. on the Z-Beamlet laser of Sandia laboratory to
prove the existence of the Vishniac instability in laboratory. In a later future, we want to explore the instability
parameters on the LIL facility (high-power laser, 60 kJ) in Bordeaux. Then, by two different approaches, namely
numerical analysis and laboratory experiments, we tend to a complete overview of the Vishniac instability.

Thank to PNPS for financial support allowing us to realize experiments on plasma jets on LULI2000 (Ecole Polytechnique).
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