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UTILIZATION OF THE ENSEMBLE KALMAN FILTER: AN OPTIMAL CONTROL
LAW FOR THE ADAPTIVE OPTICS OF THE E-ELT
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Abstract. Adaptive Optics (AO) systems require the implementation of techniques intended for real time
identification of atmospheric turbulence. Nowadays there are several approaches. One of them is using the
Kalman Filter (KF) and presents numerous advantages at the level of optimal control. However it will be
impossible to install this process within the frame of an AO system for any ELT class telescope because of the
quantitative leap in the number of parameters (high dimensional system) and consequently the quantitative
leap in the cost in real time processes. First of all, we briefly give some backgrounds of AO on 8-10 m class
telescopes and the utilization of the KF for an optimal control law. Then we present the Ensemble Kalman
Filter (EnKF), a recent method tried and tested in Geophysics and which is particularly well suited for a
transition to a very high number of parameters. After a description from a general point of view, we shortly
present the numerical implementation and two main approaches for simplifying the matrix equations of the
estimation in order to reduce the computational complexities of this technique. Finally, we propose some
different perspectives and future works of this approach.
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1 Background

1.1 Adaptive Optics command on 8-10 m class telescopes

In a standard AO system, the wave front sensor which gives a measurement of the wave front shape is located
after the corrector element, a Deformable Mirror (DM). The wave front sensor gives then access to the shape of
the residual phase. From its measurements, one has to compute the new optimal voltages to apply on the DM.
The whole system therefore works in a closed loop. The usual control law for classical AO on standard 8-10
m class telescopes is made of a simple integrator control law on which the integrator gain has eventually been
optimized with respect of the signal to noise ratio, in order to minimize the propagation of the noise mode by
mode. When the phase is decomposed on a basis of modes, it in fact appears that the signal to noise ratio can
be different on each mode. It becomes then possible to adjust the integrator gain on each mode.
Unfortunately, this approach on special AO systems, such as wide field AO, does not allow to correct efficiently
the turbulence because in those cases, some energetic modes have a very poor signal to noise ratio.
It becomes then necessary to estimate those modes and not only to filter them : the Kalman Filter (KF) based
control law allows this estimation.

1.2 Utilization of the KF and notations used for the Multi Conjugate AO (MCAO) on 8-10 m class telescopes

On a 8-10 m class telescope, the KF based control law improves the performance of wide field of view AO
systems (MCAO for example), thanks to its ability to estimate the badly seen modes (with a low signal to
noise ratio). It is also very helpful in eXtreme AO systems to predict and compensate the telescope vibration’s
effects. We will use the notations and the structure of the control law presented for MCAO in Le Roux et al.
(2004) and Petit et al. (2009). For the hidden state vector, we choose an expression with the turbulence phase
at 3 successive instants and the DM’s voltages at 2 successive instants :
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We have a linear state space model whose solution in the Gaussian case is given by the KF :
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The estimation of the predicting state vector is : X̂
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1.3 Limitations of the KF for the AO systems of the E-ELT

Such a control law would be very helpful on an ELT class telescope. But it is becoming to much computing
demanding, as the number of parameters increases dramatically. If the dimension n of the state vector is large
(about 105 for the E-ELT), then computing and storing large n×n covariance matrices is impossible and the
products for the estimation error’s covariance matrices are even more problematic to work out.

2 The Ensemble Kalman Filter (EnKF) for the AO systems of ELT class telescopes

2.1 Presentation and theoretical concepts of the EnKF

The idea will be to use Monte Carlo samples and not to use the exact estimation error’s covariance matrices.
EnKF represents a distribution of the system state using a random sample, called an ensemble, and replace the
covariance matrices by the sample covariance matrices computed from the ensemble.
EnKF is a Monte Carlo approximation of the KF which avoids evolving the real covariance matrices.
First of all, an initial ensemble of Ns elements is simulated as Independent Identically Distributed (IID) Gaussian
random vectors with the same statistics as the initial condition X0 : X̂1

0/0; ... ; X̂Ns

0/0

During the prediction step, given the previous analysis ensemble, each ensemble element i is propagated
independently according to the state equation (i is an integer from 1 to Ns) :

X̂i
k/k−1 = A× X̂i

k−1/k−1 + Vi
k

We have to notice that IID random vectors Vi
k are simulated with the same statistics as the additive Gaussian

model noise Vk in the original state’s equation. We can then calculate :
the empirical estimation mean vector : mNs

k/k−1 = 1
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×
∑Ns

i=1 X̂i
k/k−1

and the empirical estimation error’s covariance matrix :
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During the correction step, given the previous forecast ensemble, each ensemble element i is updated inde-
pendently according to the estimation equation :

X̂i
k/k = X̂i

k/k−1 + Hk(PNs

k/k−1)× [Yk + Wi
k − C× X̂i

k/k−1]

We have to notice that IID random vectors Wi
k are simulated with the same statistics as the additive Gaussian

measurement noise Wk in the original observation’s equation. But there are 2 approaches (see 3.3 and 3.4) :
the covariance matrix

∑
w can be obtained from the randomized data or from the real measurement errors.

We can then calculate :
the empirical Kalman gain matrix : Hk(PNs

k/k−1) = PNs

k/k−1 × CT × [C× PNs

k/k−1 × CT +
∑

w]−1

the empirical estimation mean vector : mNs

k/k = 1
Ns
×
∑Ns

i=1 X̂i
k/k

The ensemble covariance matrix PNs

k/k−1 is computed from all ensemble members together which introduces

dependence and destroys the normality of the ensemble distribution. But Mandel et al. (2009) gives a mathe-
matical proof of the convergence of the EnKF in the limit for large ensembles to the KF (large ensembles are
in fact nearly IID and nearly normal). In Geophysics, they usually use a value of Ns between 50 to 100.



Ensemble Kalman Filter for AO of the E-ELT 75

2.2 Utilization of the EnKF for the AO systems of the ELT class telescopes

The EnKF allows to bring on an ELT all the advantages of the state space formalism of a KF based control law.
The ability of estimating the unseen modes for wide field AO remains critical. On an ELT class telescope, the
ability to filter out vibration’s modes thanks to an adapted state space model can also become fundamental, as
the vibrations of an ELT class telescope is a critical issue.

3 Numerical Implementation of the EnKF

3.1 Implementation of the EnKF

It can be shown (Evensen (2003); Mandel (2006)) that, during the correction step, the vectorial equation can
be rewritten with this new matrix equation :

X̂k/k = X̂k/k−1 + Zk(CZk)
T

Ns−1 × [ (CZk)(CZk)
T

Ns−1 + Σw]−1 × [Dk − CX̂k/k−1]

with : Zk = X̂k/k−1 × [INs
− 1

Ns
× JNs

] and JNs
a matrix with each element is equal to 1.

3.2 Computational Complexities of the EnKF

For the estimation of the computational complexity of this formula, we will only consider the number of multi-
plications. We just have to know that the multiplication of a matrix of size n1 × n2 by a matrix of size n2 × n3

has a numerical cost of n1 × n2 × n3 multiplications. This cost is noticed : O(n1 × n2 × n3).
We have also to remind that : n is the number of coordinates in the state’s vector Xk, p is the number of
coordinates in the observation’s vector Yk, and Ns is the number of elements in the ensemble.

3.3 Evensen’s Approach

The observations Dk are treated as random variables having a distribution with mean equal to the first-guess
observations and covariance matrix equal to Σw (the simulated random measurement errors Wi

k have a mean

equal to zero). We define the ensemble covariance matrix of the measurements as : Σw = 1
Ns−1 ×

∑Ns

i=1 WiWiT

As Evensen wrote : ”the actual observation error covariance matrix is poorly known and the errors introduced
by the ensemble representation can be made less than the initial uncertainty in the exact form of Σw. Further,
the errors introduced by using an ensemble representation for Σw have less impact than the use of an ensemble
representation of matrix PNs

k/k−1.”

Using a Single Value Decomposition (SVD), a pseudo inversion and with the assumption of uncorrelated forecast
elements and measurement errors, for the correction step, the new estimation’s formula is :

X̂k/k = X̂k/k−1 + Zk(CZk)T ×O1(ΣΣT)†OT
1 × [Dk − CX̂k/k−1]

The total computational complexity obtained is : O(N2
s × (n + p))

which is linear and suitable for large values of n and p.

3.4 Mandel’s Approach

The matrix Σw is the covariance matrix of the real measurement errors rather than the sample covariance
matrix of the randomized data. Because Σw is always positive definite, there will be no difficulty to compute
Σw = SST (very low cost) and calculate the inverse Σ−1w . Moreover, there will be no need to use a pseudo
inversion or a SVD on a large matrix.
Using the Sherman-Morrison-Woodbury formula and a Cholesky decomposition on a small matrix (its size is
only Ns ×Ns), for the correction step, the new estimation’s formula is :

X̂k/k = X̂k/k−1 + Zk(S
−1CZk)

T

Ns−1 {Ip − S−1CZk

Ns−1 [INs
+ (S−1CZk)

T(S−1CZk)
Ns−1 ]−1(S−1CZk)T}S−1[Dk − CX̂k/k−1]

The total computational complexity obtained is : O(N3
s + N2

s × (n + p))
which is linear and suitable for large values of n and p.
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3.5 Comparisons

These two implementation techniques have a linear computational complexity in the number of degrees of
freedom n and in the number of degrees of observation p (with a proportional factor N2

s ).
However the method used by Mandel involves symmetric products of matrices which is numerically more stable
and allows to save memory.
The problems using a low rank measurement error covariance matrix pointed out by Kepert (2004) are resolved
in Evensen (2004) where he introduced a new Square Root implementation of the EnKF.

4 Conclusions

We have made a brief and simple description of two different efficient implementations of the EnKF (with a
linear complexity) in order to use it as an optimal control law for the AO systems of the ELT class telescopes.
This version described here involves randomization of data. But some alternative methods (without random-
ization of data) based on Square Root analysis schemes and the Ensemble Transform Kalman Filter (ETKF)
seem to be very promising : some theoretical studies on the links between ETKF and the AO/MCAO for the
E-ELT will be therefore deepened. The next step will be to adapt the current routines in order to implement
them on our AO simulator for different numerical simulations. Then some works on the hardware and software
design will be made to obtain precious gain in the real time identification. And finally, we will compare our
results with those obtained in the other existing methods for the AO systems of ELT class telescopes.
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