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PROPERTIES OF PHONONS IN THE NEUTRON STAR CRUST
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Abstract. Neutron stars are compact objects, created in supernova explosions at the end of the life of
massive stars. They contain matter under extreme conditions, in particular concerning the density : starting
from a lattice of (neutron rich) nuclei in the crust one reaches nuclear matter at several times the density of
atomic nuclei in the center. One way to understand this object is to confront theoretical modelisation with
observations. Among observations of pulsars there is the thermal emission of its surface. This observable,
which depend on the heat transport properties, is very sensitive to the superfluid and superconducting
character of the different sutructures inside the star. The presentation is focussed on the inner crust, where
we can find an interesting nuclear structure called the “Pasta Phase”. Its excitation spectrum within a
superfluid hydrodynamics approach will be discussed in view of calculating the contribution to the heat
capacity.
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1 Introduction

Neutron stars are fascinating objects, containing matter under extreme conditions of temperature, density
and magnetic field. In order to study these celestial bodies, theoretical modelisation has to be confronted
with observations. A prominent observable is the thermal evolution of isolated neutron stars. The surface
temperature can be deduced from the thermal emission. The age, if the neutron star cannot be associated
to a known supernova event, can be obtained measuring the ratio P/2Ṗ , where P is the pulse period. From
this ratio, assumming the pulsar to be a rotating magnetic dipole, the age can be estimated. The observation
of the thermal evolution puts stringent constraints on cooling models. Since the surface temperature is the
result of the interplay between thermal radiation and heat transport from inside the star, it is sensitive to the
microscopic processes occuring in the different parts of the star at different evolution stages determining heat
transport properties of neutron star matter. These are, as neutrinos play an important role for neutron star
cooling, neutrino emissivities, and in addition heat capacity and thermal conductivity. Here, we will concentrate
on the heat capacity. There are contributions to the heat capacity from all the different possible excitations
at the given temperature, such that it is important to consider the entire excitation spectrum. More details
about the evaluation of the specific heat and a discussion of the usually considered contributions can be found
in Gnedin (2001). In what follows, we will concentrate on the inner crust.

The inner crust of neutron stars is characterised by a transition from homogeneous matter in the core to a
lattice of atomic nuclei in the outer crust. Ravenhall & al. (1983) predicted that this transition passes via more
and more deformed nuclei. Starting from an almost spherical shape, they could form tubes or slabs immersed
in homogeneous neutron rich matter at the different densities. These phases are commonly called the nuclear
pasta.

In neutron stars older than several minutes, matter becomes superfluid with energy gaps of the order of 1
MeV in the inner crust, see Chamel (2008). This means, that individual nuclei cannot easily be excited and that
their contribution to the specific heat is thus strongly suppressed. The main contributions to the heat capacity
considered so far in the crust are thus electrons and lattice vibrations as well as collective excitations of nuclei.
However, the superfluid character of neutron star matter induces collective excitations, not considered before,
which can give an important contribution to the heat capacity in certain regions, see Aguilera (2009). The aim
of this paper is to study these collective excitations in the inner crust employing a superfluid hydrodynamics
approach.
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Fig. 1. Representation of ”lasagna” structure

2 Superfluid hydrodynamics for the “Lasagna” phase

2.1 Characteristics of “Lasagna”

As mentioned above, the geometrical structure of the different phases in the inner crust can be very different.
For the moment we limit our approach to one-dimensional inhomogeneities, i.e. to the phase called “Lasagna”.
It appears close to the core and it is characterised by a periodic alternance of slabs with different proton and
neutron densities as illustrated in Fig. 1. As can be explained from the origin of this phase as deformed nuclei
immersed in neutron rich matter, one slab contains nuclear matter with proton and neutron densities of the
same order, whereas the other one, having a lower total baryon density, is largely dominated by neutrons. The
latter will be labelled by an index “1”, the former by “2”. The width of a slab (L1, L2 in Fig. 1) is typically
of the order of 5 fm and the overall baryon density is approximately half nuclear matter saturation density, i.e.
0.08 fm−3.

2.2 Superfluid hydrodynamics approach

We consider a model with two (super)-fluids, one for protons and one for neutrons. Since the considered
temperatures are much lower than the pairing gap, we are working in the zero temperature approximation.
We are studying local microscopic effects, and the fluid velocities involved are low, such that relativistic effects
are probably very small and we can use the non-relativstic approximation. In order to derive the superfluid
hydrodynamics equations, we start from energy-momentum conservation and particle number conservation
for each species∗. We then expand the equations to first order in density perturbations around stationary
equilibrium leading to wave equations for the sound waves. Since superfluids have no viscosity, naively we
would end up with two sets of independent equations per fluid. There is, however, a non-dissipative interaction
between the two fluids called entrainement. The entrainement effect coupling the two superfluids has been first
discussed by Andreev & al. (1975) and is nowadays a well known ingredient for superfluid hydrodynamics
in homogeneous neutron star matter, see e.g. Prix (2004). Because of entrainement, the two resulting sound
modes with corresponding sound speeds are not pure proton or neutron modes, but they are coupled. The
parameters of our model are calculated within a Landau-Fermi liquid approach using a relativistic mean field
type effective nuclear interaction, see Avancini (2009).

In order to describe the propagation of waves through the slabs, we have to specify boundary conditions at
each interface. Our basic assumption is here that contact between the fluids is maintained at all times. This is
a standard assumption in problems of wave propagation in inviscid fluids. This assumption implies continuity
of fluid velocities perpendicular to the interface and continuity of chemical potentials across the interface. The
periodicity is taken into account using the Floquet-Bloch theorem. This means that the wave function U(z) has
to satisfy the following condition:

U(z + L) = eiqL U(z) , (2.1)

where L = L1 + L2 is the periodicity (see Fig. 1) and q the Bloch momentum. The Bloch condition, Eq. (2.1)
closes our system of equations such that we can now proceed in computing the dispersion relation of propagating
waves in the “Lasagna” phase.

∗Stricly speaking it is baryon number and charge conservation
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Fig. 2. Dispersion relation (energy as a function of the momentum) for the “Lasagna” phase at baryonic density

nb = 0.0804 fm−3.

3 Excitation spectrum of the “Lasagna”

At the present stage we consider only waves propagating perpendicularly to the interfaces, i.e. in z-direction (see
Fig. 1). Then, for a typical baryonic density nb = 0.0804 fm−3 appearing in the model of Avancini (2009) for
the ”Lasagna” phase, we obtain the dispersion relation shown in Fig. 2. For that baryon density L1 = 4.535 fm
and n1 = 0.0705 fm−3. For this example, phase 1 contains only neutrons. Phase 2 is smaller in size L2 = 3.770
fm with a density of n2 = 0.0923 fm−3 and a proton fraction Yp = np/nb = 0.0436.

The lowest branch is an “acoustic branch”. It is called acoustic because it follows a linear dispersion law,
ω = cs q at low momenta, with cs being the sound speed. For the example at hand, cs = 0.2852 c, where c
denotes the speed of light. We are mostly interested in energies of the same order as the temperature, i.e. below
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∼ 1 MeV, since these give the main contribution to the thermal energy,

Eth =

∫
d3q n(~q)ω(~q) , (3.1)

and thus to the specific heat. n(~q) represents here the (bosonic) occupation number. We therefore conclude
that for the present example, the only relevant contribution arises from the low momentum part of the acoustic
branch with a linear dispersion law.

The other, higher lying branches are called “optical branches”, known to appear in periodic structures
like the “Lasagna” phase. At the density discussed for the present example, these branches play no role at
temperatures below 1 MeV. It is, however, interesting to analyse their structure. The dotted lines in Fig. 2
represent a frequency

ωj =
u2
L2
jπ (3.2)

with an integer j. u2 is the sound speed corresponding to the proton dominated mode in phase 2. Many of the
optical branches follow well these frequencies. Remembering that phase 1 only contains neutrons, this suggest
that these modes could be interpreted as (mainly) protons oscillating in a cavity given by the extension of phase
2. In less dense parts, where the sound speeds are smaller, these optical branches could well give a non-negligible
contribution to the thermal properties, too.

4 Summary and outlook

We have presented a first calculation of wave propagation in the “Lasagna” phase in the inner crust of neutron
stars. This phase is characterised by alternating slabs of nuclear matter with different densities and proton
fractions. We have discussed the resolution of the superfluid hydrodynamics equations taking into account the
periodic structure of the medium. The dispersion relation shows one acoustic and several optical branches. We
have motivated that these modes, not considered before, can have an influence on the thermal properties of
the matter, in particular the specific heat. For the example presented, the main contribution comes from the
acoustic branch at low momenta, where the dispersion law is almost perfectly linear. For lower overall baryon
densities, other branches could contribute, too.

These rather qualitative arguments should be confirmed by a computation of the contribution to the specific
heat. For that purpose, wave propagation has to considered in all directions, not only perpendicular to the
interfaces. Work in this direction is in progress.

It would in addition be interesting to extend the work to other geometrical structures like rods, tubes and
spheres, as the contributions to the specific heat are expected to be more important for these less dense phases.
Finally, the contributions of these collective excitations have to be added to that from electrons and lattice
phonons as well as the nuclei in order to examine the influence on the overall cooling behavior of the star.

It is to be expected that the excitations considered here have an effect on neutrino propagation in matter,
too, since they are susceptible to couple to neutrinos. It could therefore be interesting to investigate the influence
on neutrinos, too.

We thank C. Da Providencia for providing us with the data for densities and sizes within the Lasagna phase in the model of
Avancini (2009).
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