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Abstract. We have developed a generic three-dimensional radiative transfer code, SPEC3D, aimed at
post-processing 3D radiation magnetohydrodynamics simulations. SPEC3D solves the monochromatic 3D
radiative transfer equation. The numerical approach and the major features of the code are presented.
The wide range of applications includes the modeling of a number of astrophysical objects and structures,
such as accretion shocks around young stellar objects, stellar and exoplanets atmospheres, cosmological
structures, but also the modeling of laboratory astrophysics experiments such as magnetohydrodynamics
jets and radiative shocks.
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1 Introduction

Radiation is a major component of many astrophysical objects. First, radiation is a probe of the physical state:
the medium is analyzed through the observed spectra. Second, radiation is often strong enough to have a
significant contribution to the momentum and energy budget of the medium.

With the considerable progress in computing power, it is now possible to build three-dimensional numerical
models that couple the contributions of fluid dynamics, radiation, and magnetic field (if strong enough). Many
3D radiation hydrodynamics or radiation magnetohydrodynamics codes have been developed over the past few
years. The treatment of radiative transfer is simplified, since such models consider the moments of the specific
intensity and some kind of a closing relation between them. On the other hand, an efficient code that solves the
monochromatic radiative transfer equation (RTE) is required, either to provide exact closing relations for the
radiation hydrodynamics, or, more importantly, in order to compute radiation for snapshots of hydrodynamic
simulations, and thus to provide a tool to analyze the physical properties of a radiating object. Several three-
dimensional radiative transfer codes have been developed over the last few years (see Carlsson 2009 for a review).

We present here a generic 3D radiative transfer code, SPEC3D. We assume local thermodynamic equilibrium
(LTE), and consider the time-independent form of the RTE. In § 2, we describe the formal solution solver, which
applies the short-characteristics method (Kunasz & Auer 1988) in a 3D Cartesian grid, and which is coupled
with efficient piecewise cubic Bezier interpolations (Auer 2003). Other features of the code are summarized
in § 3. We finally present a first application to the modeling of radiative shocks experiments in § 4, which is
relevant to the understanding of accretion shocks in classical T Tauri Stars.

2 3D short-characteristics

2.1 Overview of the method

The short-characteristics method can be summarized as follows. We consider a grid for which the thermophysical
properties (temperature, density, velocity) are known from a prior (magneto)hydrodynamics simulation. We use
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c© Société Francaise d’Astronomie et d’Astrophysique (SF2A) 2011



486 SF2A 2011

the integral form of the formal solution of the RTE as described hereafter. For a given direction of propagation,
we consider each ray that emerges from each point of the grid. There is one ray per grid point per direction.
We determine the intersection of each ray with the closest face of the corresponding upwind cubic cell. The line
segment joining the intersection point with the grid point is called the short-characteristic (SC). The integral
form of the RTE is then solved along this short-characteristic. There is one short-characteristic per grid point
per direction. Fig. 1 shows an example of a short-characteristic defined in a 3D cartesian grid. We want to
determine in the observer’s frame the specific intensity in point 2 for a direction defined by polar angle θ and
azimuthal angle ϕ. Point 1 is the intersection of the considered ray with the upwind cubic cell. We call it
upwind endpoint. The short-characteristic is here defined by the line segment joining point 1 and point 2.

Let us introduce the following notations. I (r,n, ν, t) is the specific intensity at position r for a radiation
propagating in direction n with frequency ν, at time t. Let us note χ(r,n, ν, t) the absorption coefficient, and ds
the elementary path length along the direction of propagation n. The optical depth from position s1 to position
s2 may be written as

τ12 = τs1→s2 =

∫ s2

s1

χ(r,n, ν, t) ds (2.1)

Let us note I2=I (r2,n, ν, t) and I1=I (r1,n, ν, t). The integral form of the RTE may be written along the
short-characteristic joining point 1 to point 2, as

I2 = I1e
−τ12 +

∫ τ12

0

S(τ)e−(τ12−τ)dτ (2.2)

where S(τ) is the source function S (r,n, ν, t).
Therefore, we can infer the specific intensity at point 2 if we know the following quantities: the specific

intensity in point 1, I1, the source function along the short-characteristic from point 1 to point 2, and the
absorption coefficient along the short-characteristic (in order to deduct the optical depth between point 1 and
point 2). However, by the very nature of the problem, the source function and the absorption coefficients are
specified only at the grid points. Therefore, we are essentially free to define laws of variation of these quantities
along the short-characteristics, typically as low-order polynomials. Moreover, the following quantities at the
upwind endpoint (point 1), intensity I1, optical depth τ1, and source function S1, have to be interpolated from
the values in the neighbor grid points. We detail in next subsection the mathematical functions that we have
adopted.

2.2 Cubic Bezier interpolations

Because of the numerous required interpolations, the short-characteristics method is known to be numerically
diffusive, whether linear or second order polynomial laws be employed. Therefore, an efficient interpolation
law has to be adopted. Following a suggestion by Auer (2003), we adopt Bezier cubic interpolation laws with
specific adjustments.

The Bezier cubic interpolant is a polynomial of degree 3, B(x), which is defined between two values of a given
function f(x), (x1, f1) and (x2, f2), so that it matches the values of the function at both ends, B(x1) = f1 and
B(x2) = f2, and whose derivatives at both ends, B′(x1) and B′(x2) are free values to be adjusted depending on
the context. Now, we introduce a constraint of monotonicity to B(x), in order to ensure its positivity between
the extremal points x1 and x2. This results in a range of permitted values for the derivative on the left end,
B′(x1), and for the derivative on the right end, B′(x2). We choose to match the derivatives at both ends with
the derivatives of the function, B′(x1) = f ′1 and B′(x2) = f ′2, if possible, i.e., as long as the monotonicity of the
interpolant B(x) is guaranteed. Such a procedure suppresses the spurious extrema encountered with a parabolic
interpolation law, while ensuring a much better fit to the interpolated function than a linear or a quadratic law
could provide.

Going back to the short-characteristics method, the Bezier cubic interpolant is used as an approximate of
the source function between the upwind endpoint 1 and point 2 (see Fig. 1). Now, if one knows the source
function value at only two points, S1 and S2, then the only possibility to estimate the derivatives at both ends
is to assume that they are identical and that they equal the value of the slope of the line that joins S1 and S2;
one can then show that Bezier interpolant reduces to linear interpolation. It is therefore necessary, in order
to increase the precision of the interpolation, to define a third point along the short-characteristic defined by
point 1 and point 2. This is why we define the downwind endpoint, point 3, which is the intersection of this
short-characteristic with the downwind cubic cell. Therefore, it is possible to specify a Bezier cubic interpolant
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between point 1 and point 2, by defining the derivative at point 1 as the slope of the line that joins point
1 and point 2. Several possibilities exist for the estimate of the derivative at point 2, using the values at
points 1, 2 and 3. The same procedure is applied for the determination of the absorption coefficient along the
short-characteristic. More details will be available in a forthcoming paper.

Another issue is the determination of the physical quantities at point 1 and point 3, which are generally
not grid points. To this end, we define Bezier cubic interpolants on the edges of the intersected face. Note
that, while the source function and the absorption coefficients are known at each point of the grid, the specific
intensity is known only in the upwind cubic cells of the current grid point that is being processed. Therefore,
the sweeping of the grid must follow the direction of propagation of the radiation, to ensure that the upwind
specific intensities are known before we determine the new specific intensity at a given grid point. Again, more
details will soon be available in a forthcoming paper.

3 SPEC3D: major features

We have developed and validated (specifically with comparisons with well-tested 1D codes) a radiative transfer
code, called SPEC3D, that determines the monochromatic formal solution of the radiative transfer equation
in a three-dimensional geometry. It applies the short-characteristics method with cubic Bezier interpolations,
as summarized in the preceding section. We have incorporated the possibility to define periodic boundary
conditions. The user can also specify pre-defined boundary conditions. We take into account the Doppler
shift of the lines. Based on the determination of the monochromatic specific intensity at each point of the
grid and for each direction, the code uses Gaussian quadratures to determine the resulting moments, the mean
intensity J(ν, x, y, z), the flux vector in the three directions, Fx(ν, x, y, z), Fy(ν, x, y, z), Fz(ν, x, y, z), and the
six components of the radiation pressure tensor Pxx, Pyy, Pzz, Pxy, Pxz, Pyz, which all depend on (ν, x, y, z).

4 Applications of SPEC3D

SPEC3D is a generic radiative transfer code that can be applied to simulate numerous astrophysical objects and
structures, e.g., accretion shocks around young stellar objects, stellar and exoplanets atmospheres, cosmological
structures. It can also be used to simulate experiments relevant to astrophysics such as magnetohydrodynamics
jets and radiative shocks.

We show here a simulation of an experimental radiative shock. Such studies are an important step toward
a correct modeling of spectroscopic signatures of accretion shocks in classical T Tauri Stars (Stehlé et al.
2010). Fig. 2 shows the monochromatic radiative flux in the direction of propagation of the shock, z-direction,
Fz (x, y, z, ν), as calculated by SPEC3D. The radiative shock is generated in a tube full of Xenon, with a
rectangular section of 1 x 1 cm2, and with the following upstream conditions: fluid velocity = 60 km s−1,
pressure = 7 bar, temperature = 1 eV. The lateral walls have a zero albedo: the photons can freely escape
from these walls. SPEC3D post processes the hydrodynamics results provided by Matthias González∗ and
generated by the three-dimensional radiation hydrodynamics code HERACLES (González et al. 2007). The
fluid is assumed to be ideal. The objective here is to show the 3D effects of the radiation. Realistic simulations
with real gas effects will be shown in a forthcoming paper (L. Ibgui, M. González et al. 2011, in preparation).
The absorption coefficients are derived from an opacity database, which is based on the Screened Hydrogenic
Model (Eidmann 1994; Michaut et al. 2004).

Left panel of Fig. 2 represents the flux Fz along z-axis at the center of the sections perpendicular to z-axis, for
a frequency ν corresponding to an energy of hν = 296 eV: Fz (x = 0.5 cm, y = 0.5 cm, z, hν = 296 eV). The red
curve represents the 3D model and the blue curve represents the 1D model (for a 1D model, the flux is obviously
the same one at any point of a given section perpendicular to z-axis). The position of the hydrodynamics shock
is z = 0.10 cm. The radiative precursor is distinctly identified in the upstream gas (González et al. 2009 show
typical profiles of a 1D radiative shock). This figure clearly reveals the difference between a 1D model and a
3D model. The maximum value of the flux Fz, reached at around z = 0.12 cm, is smaller when the 3D model
is applied (7.3 versus 7.7 erg−1cm−2Hz−1) and the flux’s extension in z-direction is smaller when the 3D model
is applied. This is due to the lateral radiative losses, which are taken into account by SPEC3D. This result
underlines the fact that a radiative shock cannot be correctly understood without considering a 3D radiative
transfer model. This is also naturally a critical point for the modeling of accretion columns in T Tauri stars.

∗AIM, CEA/DSM/IRFU, CNRS, Université Paris Diderot, 91191 Gif-sur-Yvette, France
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Right panel of Fig. 2 represents the flux Fz at a given position in the radiative precursor z = 0.22 cm,
Fz (x, y, z = 0.22 cm, hν = 296 eV). A behavior of the flux, whose value decreases as one approaches the borders,
due to lateral radiative losses, is another manifestation of a 3D nature of radiative shocks.

5 Conclusions

We have presented a new generic three-dimensional radiative transfer code, SPEC3D, that solves the monochro-
matic 3D radiative transfer equation in Cartesian coordinates. Currently, we assume local thermodynamic
equilibrium (LTE), and a time-independent situation, but both these simplifications will be removed in the
future development of the code. We have employed the 3D short-characteristics method, known to be faster
than the long-characteristics method, combined with performant cubic Bezier interpolation techniques.

We have shown a preliminary application to the modeling of laboratory generated radiative shocks. We have
demonstrated the necessity to account for the 3D radiative transfer in 3D radiative shock structures.

We intend to apply our code to a large variety of astrophysical objects and structures, such as accretion
shocks around young stellar objects, stellar and exoplanet atmospheres, cosmological structures, but also for
laboratory astrophysics to study magnetohydrodynamics jets and radiative shocks.

The authors are grateful to Matthias González (AIM, CEA/DSM/IRFU, CNRS, Université Paris Diderot, 91191 Gif-sur-Yvette,
France) for providing the 3D hydrodynamics results of the ideal gas shock wave simulation, which were used as an input for the
radiative transfer code SPEC3D. The work is supported by French ANR, under grant 08-BLAN-0263-07.
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Fig. 1. The short-characteristics method illustrated with an example of a 3D cartesian grid. The specific intensity is

calculated in point 2, for a radiation propagating from point 1 (upwind endpoint) to point 3 (downwind endpoint). The

direction n of the ray is defined by polar angle θ and azimuthal angle ϕ. The short-characteristic is defined by the line

joining point 1 and point 2. The radiative transfer equation is solved in its integral form along this short-characteristic.

The cell numbers around point 2 are i, i+1 in x -direction, j, j+1 in y-direction, and k, k+1 in z -direction.
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Fig. 2. Left: Monochromatic radiative flux in z-direction, Fz (x = 0.5 cm, y = 0.5 cm, z, hν = 296 eV), at the center of

the planes perpendicular to z-axis, emitted by a radiative shock propagating in z-direction. It is a pure Xenon flow in a

cell with a rectangular section of 1 x 1 cm2. The hydrodynamics simulation makes the assumption of an ideal gas, with

the following upstream conditions: fluid velocity = 60 km s−1, pressure = 7 bar, temperature = 1 eV. We display the

results of two hydrodynamics and radiative transfer models: the one-dimensional model is depicted by the blue curve,

the three-dimensional model is represented by the red curve. See text for comments. Right: The same monochromatic

radiative flux, but at a given z-position, Fz (x, y, z = 0.22 cm, hν = 296 eV). The 3D effects are clearly demonstrated by

a non-constant behavior of the flux, which is due to lateral radiative losses.
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