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Abstract.
After three decades of small scale research, very high energy (> 100 GeV) gamma-ray astronomy emerged

in 1989 with the detection of the Crab nebula by the Whipple observatory, Arizona, USA. In the ’90s, French
researchers improved the temporal and spatial sampling of the atmospheric showers initiated by gamma
rays, with experiments such as ASGAT, Themistocle, Celeste and CAT. Only a handful of TeV sources had
been seen in 2000, the Crab nebula (the standard candle in this field) and five extragalactic sources, mostly
detected during flaring periods. The advent of stereoscopy (simultaneous monitoring of a shower with several
telescopes) established the domain with observatories such as HEGRA and now H.E.S.S., in which French
laboratories are involved. This enabled the detection of > 100 sources and the ability to sample light curves
down to the minute time scale during exceptional outbursts, such as the flares of the blazar PKS 2155-304
in July 2006. During the next decade, the first large gamma ray observatory, CTA, will probe the sky above
50 GeV with tens of telescopes. The sensitivity and low-energy threshold of this array will allow the probing
of blazar ultra fast variability during exceptional outbursts. We show with simulations that CTA timing
capabilities would enable us to resolve the behaviour of PKS 2155-304 down to the second timescale, thus
raising puzzling questions on the engine responsible for the TeV emission.

Keywords: high energy astrophysical phenomena, variability, galaxies: active, BL Lacertae objects: indi-
vidual: PKS 2155-304

1 Introduction

Characteristic variability time scales of Active Galactic Nuclei (AGN) provide constraints on the properties of
the emitting region. Assuming that the whole region of size R coherently emits the TeV γ rays, the causality
argument yields a low bound on the minimum variability time scale tvar > R/c × (1 + z)/δ, where δ and
z are the Doppler factor and redshift of the studied region. Assuming that R scales with the Schwarzschild
radius RS = 2GM/c2 of the supermassive black hole, one can derive a lower limit on the Doppler factor. Such
constraints have been established by Aharonian et al. (2007) for the exceptional outbursts of PKS 2155−304
monitored by H.E.S.S. in July 2006. To derive proper variability time scales, the lightcurve shown on Fig. 1
was fitted with a series of generalized asymmetric gaussian peaks I(t) = A exp[−(|t− tmax|/σr,d)κ], where tmax

is the time of the burst’s maximum intensity A; σr and σd are the rise (t < tmax) and decay (t > tmax) time
constants, respectively; and κ is a measure of the burst’s sharpness. σr and σd being highly correlated with κ, the
appropriate rise and decay times from half to maximum amplitude are then computed as τr,d = [ln 2]1/κσr,d. The
peak finding and fitting procedure reveals that during MJD 59344 the flux of PKS 2155−304 is well described
by a series five bursts above a constant term (see the table in Fig. 1, extracted from Aharonian et al., 2007).

The shortest rise time during these outbursts is τr = 67 ± 44 s (fifth peak), with a large uncer-
tainty due to the minute temporal binning. Conservatism impose to chose the shortest significant rise time
as τr HESS = 173 ± 28 s (first peak), corresponding to a lower limit on the Doppler factor δ > 60− 120, for a
black hole mass ranging in 1−2×109M�. Variability can also be investigated in the Fourier space. A structure
function analysis of this lightcurve as well as the contiguous nights (Superina, 2008 - Abramowski et al., 2010)
shows that the Power Spectral Density (PSD) of the underlying stochastic process is well described by a power
law Pν ∝ ν−2. The high frequency part of the spectrum is almost flat above a frequency νmax, i.e. dominated
by the measurement uncertainty power, which would be lowered if the flux was measured with more statistics.
Thus an improvement of the instrumental sensitivity would enable the probing of higher frequencies and bring
better constraints on the shortest time scale visible in such a light curve.
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tmax A τr τd κ

[min] [10−9 cm−2 s−1] [s] [s]

41.0 2.7 ± 0.2 173 ± 28 610 ± 129 1.07 ± 0.20
58.8 2.1 ± 0.9 116 ± 53 178 ± 146 1.43 ± 0.83
71.3 3.1 ± 0.3 404 ± 219 269 ± 158 1.59 ± 0.42
79.5 2.0 ± 0.8 178 ± 55 657 ± 268 2.01 ± 0.87
88.3 1.5 ± 0.5 67 ± 44 620 ± 75 2.44 ± 0.41

Fig. 1. Left: Integral flux of PKS 2155−304 above 200 GeV during the first hours of MJD 59344. The data are binned

in 1 min intervals. Right: Results of the best χ2 fit of the superposition of five bursts and a constant to the H.E.S.S.

data. The constant term is 0.27± 0.03× 10−9 cm−2 s−1 (1.1 ICrab) Extracted from Aharonian et al., 2007.

2 Simulation of the lightcurves

2.1 Estimation of the flux

To estimate the flux that CTA would monitor, we first have to take into account the decrease of the energy
threshold from Emin HESS ∼ 200 GeV to Emin CTA ∼ 50 GeV that would result in an increase of the integral
flux above the threshold by a factor:

ΦCTA(t) = ΦHESS(t)×

∫ Emax CTA

Emin CTA
F (E)dE∫ Emax HESS

Emin HESS
F (E)dE

(2.1)

where Emax HESS and Emax CTA are the maximum photon energies detectable by H.E.S.S. and CTA, reason-
ably approximated here as +∞ . F (E), the photon spectrum - sometimes written dN/dE - is derived from the
Synchrotron Self Compton (SSC) model fitted to the data of PKS 2155−304 during the 2008 multi wavelength
campaign (Sanchez & Giebels, 2009 - Aharonian et al., 2009). ΦHESS(t) is the lightcurve shown on Fig. 1,
reasonably approximated by the series of bursts described in the introduction.

The energy dependency of the flux is fully accounted for in Eq. (2.1), but the modeling of the time dependency
requires knowledge on the small timescales behaviour of the flux and is thus related to the high frequency
part of the PSD. If the temporal binning of the lightcurve monitored with CTA (resp. H.E.S.S.) is TCTA
(resp. THESS), then the highest frequency accessible for a given sampling (Nyquist frequency) will go from
νNyq HESS = 1/2THESS to νNyq CTA = 1/2TCTA. The variability contained in the frequency range
[νNyq HESS , νNyq CTA], the extended part of the PSD, must be added to the lightcurve. Let us call the inverse
Fourier transform of this extension Ψ(t), then Eq. (2.1) becomes:

ΦCTA(t) = (ΦHESS(t) + Ψ(t))×

∫ +∞
Emin CTA

F (E)dE∫ +∞
Emin HESS

F (E)dE
(2.2)

To simulate Ψ(t), a certain temporal behaviour must be assumed. One one hand, we assume no additional
variability above the maximum frequency for which the H.E.S.S. PSD is significantly above the measurement
noise level. Then, Ψ(t) represents the measurement noise fluctuations. One the other hand, the PSD can be
modeled as a continuous power law, even for frequencies above νmax HESS . Then Ψ(t) Fourier transform is the
extension of the H.E.S.S. PSD :

P (ν) =

{
0 if ν < νmax HESS

ν−2 if ν ≥ νmax HESS
(2.3)

where νmax HESS ∼ 1.6× 10−3 Hz is the frequency for which the PSD of the HESS lightcurve is dominated by
the measurement noise level. We use Timmer and König’s method (1995) to simulate lightcurves associated to
P (ν). One of the realizations is shifted to have a null mean and finally stretched to have a proper variance. The
amplitude of the stretch is determined by the Parseval’s theorem: the variance of the lightcurve points equals
the area below the PSD. That is to say, if the PSD is described by a power law of Fourier index α:

V (ΦCTA) = V (ΦHESS)×

∫ νmax CTA

ν0
ν−αdν∫ νmax HESS

ν0
ν−αdν

(2.4)
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where ν0 is the inverse of the lightcurve duration and νmax CTA the frequency for which the PSD of the simulated
CTA lightcurve is dominated by the measurement level noise, reasonably approximated by the associated Nyquist
frequency ∗.

2.2 Estimation of the error on the flux and determination of the sampling rate

The estimation of the uncertainty on the flux in each time bin is of uttermost importance since it is directly
related to the sampling rate. Assuming that the number of collected photons Nγ during a time T is Poisson
distributed, the error on the integrated flux is σΦ(>Emin) = Φ(> Emin)/

√
Nγ .

To compute the integral flux above a threshold energy Φ(> Emin), one has to take into account the en-
ergy dependency of the collection area, A(E) obtained from simulations described by Bernlöhr (2008) / CTA
consortium (2010), and weigh it by the energy distribution of the incoming photons F (E):

Φ(> Emin) =
Nγ[∫ +∞

Emin
A(E)F (E)dE /

∫ +∞
Emin

F (E)dE
]
× T

. (2.5)

The uncertainty on the integral flux is then :

σΦ(>Emin) =

√√√√ Φ(> Emin)[∫ +∞
Emin

A(E)F (E)dE /
∫ +∞
Emin

F (E)dE
]
× T

(2.6)

The last missing parameter in Eq. (2.6) is the temporal binning T , which is chosen so that the mean
significance of CTA lightcurve points equals the one of H.E.S.S. lightcurve points.

3 Results

The lightcurve simulated in case of no extension of the PSD is shown in Fig. 2. The increase of collection
area and decrease of energy threshold allows a temporal binning of few seconds vs a minute for the H.E.S.S.
lightcurve. The analysis performed on the H.E.S.S. lightcurve by Aharonian et al. (2007) was applied to the
CTA simulated one. This light curve was fitted with a series of bursts, detected with a peak finder, added
to a constant term. The value of the latter parameter is fixed to 2.7 × 10−9 cm−2 s−1, in agreement with the
fit performed on H.E.S.S. data†. Each peak of the lightcurve shown in Fig. 2 is directly comparable to one of
the H.E.S.S. lightcurve, since there is not any distortion by an additional variance. H.E.S.S. and CTA aver-
age rise/decay time resolution σt =< στ / τ > during the outburst can be derived from each table, yielding
σt(H.E.S.S.)= 38% and σt(CTA)= 17%. This resolution improvement implies a significant measurement of the
fifth peak rising time τr CTA = 60 ± 18 s, approximately three times smaller than τr HESS = 173 ± 28 s.
Considering τr CTA as an upper limit on the variability time scale would yield a Doppler factor δ > 200 - 400.

In the case where variability is added above νmax HESS , the function Ψ(t) can be derived from simulations,
with power above the measurement noise level up to νmax CTA ∼ 10−2 Hz. One of the realization is used
to obtain the simulated lightcurve ΦCTA(t) shown in Figure 3. The addition of variance in the Fourier space
yield substructures in the temporal space, the second and fourth peaks in this case, which could not have been
resolved by H.E.S.S.. The shortest significant rising time tabulated in Fig. 3, τr CTA = 25±4 s, is approximately
seven times smaller than τr HESS , corresponding to a Doppler factor δ > 450 − 900, quite unusual within
the currently favored acceleration schemes (Blandford, 2005). The large Doppler factor derived would certainly
question the causality argument and the interpretation of such a lightcurve in terms of bursts.

∗The PSD is a steep power law, which makes the variance in [νmax CTA, νNyq CTA] negligible compared to the one in
[νmax H.E.S.S., νmax CTA].
†CCTA and CHESS being the constant terms of each light curves, we fixed CCTA = CHESS ×∫ +∞

Emin CTA
F (E)dE/

∫ +∞
Emin HESS

F (E)dE.
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tmax A τr τd κ

[min] [10−9 cm−2 s−1] [s] [s]

41.4 26.7 ± 1.5 208 ± 13 452 ± 80 1.11 ± 0.17
59.1 16.8 ± 2.0 111 ± 14 138 ± 18 1.69 ± 0.63
71.5 32.7 ± 1.0 541 ± 106 186 ± 38 1.38 ± 0.27
78.8 23.8 ± 1.8 182 ± 36 784 ± 122 1.58 ± 0.81
88.3 11.9 ± 1.1 60 ± 18 513 ± 65 2.65 ± 0.40

Fig. 2. Left : Simulated integral flux of PKS 2155−304 above 50 GeV as CTA would monitor it. This simulation

corresponds to the case where no additional variability is present above νmax HESS . The data are binned in 7.5 seconds

intervals. Right : Results of the best χ2 fit of the superposition of five bursts and a constant to the simulated CTA

data. The constant term is fixed to 2.7× 10−9 cm−2 s−1.

tmax A τr τd κ

[min] [10−9 cm−2 s−1] [s] [s]

43.3 25.7 ± 1.1 202 ± 13 147 ± 13 1.42 ± 0.15
51.0 10.9 ± 1.6 32 ± 8 34 ± 6 1.85 ± 0.44
60.4 17.5 ± 2.0 210 ± 19 37 ± 8 2.19 ± 0.35
64.4 15.1 ± 2.0 124 ± 27 60 ± 11 1.32 ± 0.28
71.5 43.7 ± 1.6 74 ± 9 80 ± 6 0.80 ± 0.11
80.5 18.3 ± 1.7 108 ± 17 177 ± 17 2.99 ± 0.43
87.8 26.8 ± 1.8 25 ± 4 235 ± 12 1.27 ± 0.10

Fig. 3. Left : Simulated integral flux of PKS 2155−304 above 50 GeV as CTA would monitor it. This simulation

correspond to the case where variability is added above νmax HESS , assuming a PSD Pν ∝ ν−2. The data are binned

in 7.5 seconds intervals. Right : Results of the best χ2 fit of the superposition of seven bursts and a constant to the

simulated CTA data. The constant term is fixed to 2.7× 10−9 cm−2 s−1.

4 Conclusions

In July 2006, the H.E.S.S. collaboration observed an exceptional outburst of the blazar PKS 2155-304. The
lightcurve sampling, limited by the instrumental sensitivity, revealed significant variations down to three min-
utes, imposing a Doppler factor above 60-120. The simulation of this dramatic outburst as it would be observed
with the low energy threshold and the large collection area of CTA allows us to show that a gain of a factor
ten on the sampling rate is achievable. Two scenarios of ultra-fast variability are investigated, each of them
imposing a Doppler factor of several hundreds, quite unusual within the current blazar paradigm. The observa-
tion of such events with CTA will certainly raise puzzling questions on the mechanisms responsible for the TeV
emission of blazars and will help to unravel their mysteries.
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