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RELATIVISTIC ASTROMETRY AND TIME TRANSFER FUNCTIONS
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Abstract. Given the extreme accuracy reached by future space astrometry missions, one needs a global
relativistic modeling of observations. Indeed, a consistent definition of the astrometric observables in the
context of General Relativity is essential to find unique stellar coordinates. This is usually done explicitly by
solving the null geodesic equations which describe the trajectory of a photon from its emission by a celestial
object to its reception by a moving observing satellite. However, we show here that this task can be avoided
if one uses the recently developed formalism of the time transfer functions. We describe a possible approach
to the reconstruction of the source coordinates from the knowledge of the reception coordinates with this
new method.
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1 Introduction

Future space astrometry missions, such as Gaia (Perryman et al. 2001; Bienayme & Turon 2002) and SIM,
will provide large astrometric catalogs with some microarcseconds (µas) accuracy on positions, parallaxes and
proper motions of celestial objects. However it is nowadays well known that µas astrometry requires a precise
relativistic modeling of astrometric parameters. Several of these modelings have been developed during the
last decade, such as GREM (Klioner 2003) or RAMOD (de Felice et al. 2006), and they are based on the
determination of the light trajectory from the emitting celestial object up to the observing satellite by solving
the null geodesic equations. However it has been recently demonstrated that this task is not mandatory and
can be replaced with advantages by another approach based on the calculation of the time transfer functions
(Le Poncin-Lafitte et al. 2004; Teyssandier & Le Poncin-Lafitte 2008). In this article we illustrate how to build
an astrometric modeling with the use of this alternative formalism.

This paper is organized as follows. In section 2 we give the notations used in this article. In section 3 we
set up the astrometric problem by introducing a moving observer receiving a light ray from a distant celestial
object. Then in section 4, we give the expression of the covariant components of a tangent vector to the light
ray received by the observer. In section 5 we deal with the expression of Solar System’s gravitational potential,
a key point to calculate the light deflection. By introducing a three zones modeling, we show how to take into
account the motion of planets during the propagation of the light ray from an emitting star to the observing
satellite. Finally, we present some concluding remarks in section 6.

2 Notations and conventions

Throughout this work, c is the speed of light in vacuum and G is the Newtonian gravitational constant. The
Lorentzian metric of space-time V4 is denoted by g. We adopt the signature (+−−−). We suppose that space-
time is covered by some global coordinates system xα = (x0,x), with x0 = ct and x = (xi), centered on the
Solar System barycenter. Greek indexes run from 0 to 3, and Latin indexes from 1 to 3. Moreover, we assume
that the curves of equations xi = const are timelike, at least in the neighborhood of the chosen observer. This
condition means that g00 > 0 in the vicinity of the observer. Any ordered triple is denoted by a bold letter. In
order to distinguish the triples built with the spacelike contravariant components of a vector from the ones built
with covariant components, we systematically use the notation a = (a1, a2, a3) = (ai) and b = (b1, b2, b3) = (bi).
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3 Set up of the astrometric problem

Let us consider a timelike observer. Along its wordline we introduce a comoving tetrad of four vectors Eαµ̂ where
index (µ) is only the tetrad index running from 0 to 3, to enumerate the four 4-vectors, while index α is a
normal tensor index. We postulate that Eα(0) is a timelike vector strictly equal to the unit four-velocity uα of
the satellite. When the observer receives a light ray from a distant object, one can characterize its spacetime
direction by a null vector kµ = (k0, ki) tangent to the incoming light ray. Its unit spacelike direction k̃µ relative
to the hyperplane orthogonal to uα is then given by (Teyssandier & Le Poncin-Lafitte 2006)

k̃µ =
kµ

uνkν
− uµ . (3.1)

It is now straightforward to calculate the three director cosines cosφ(a) formed by each spacelike vector Eα(a)
(here index (a) runs from 1 to 3) with k̃µ, as follows

cosφ(a) = −
E0

(a) + k̂iE
i
(a)

u0
(

1 + k̂iβi
) , (3.2)

where βi = vi/c, vi being the coordinate velocity of the observer, and k̂i = ki/k0 will be called in the following
the deflection functions. We immediately deduce from equation (3.2) that the knowledge of the ratio ki/k0 fully
characterizes the light ray at the reception point and so it is mandatory to determine completely the astrometric
director cosines. However, most of relativistic modelings are dealing with an explicit integration of the light ray
equations to calculate this ratio, even if these calculations may be very complicated. Thus, our purpose is now
summarized by this question: if we do not determine the light ray trajectory from its emission to its reception,
what can we do instead? The answer lies in the basic properties of a null geodesic connecting two point-events,
in particular the relationship between time delay and deflection of light.

4 The covariant components of the tangent vector

Let us consider that spacetime is globally regular with the topology R×R3 and that it is without horizon, which
is admissible in the context of practical space astrometry within the Solar System. Henceforth, we are working
with a barycentric coordinates system (BCRS). In this section, we consider only one deflecting body of spatial
position xp and we suppose the existence of a unique light ray connecting two point-events xA = (ctA,xA) and
xB = (ctB ,xB). By convention xA and xB denote the emission point and the reception point of the photon,
respectively. In addition we put RAB ≡ R = |xB − xA| as illustrated in figure 1.
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General principle
Let’s take a light signal emitted
at a point event xA = (tA, !xA)
and received at a point event
xB = (tB , !xB), considering the
IAU 2000 [2] barycentric reference
system (BCRS) and a deflector
body at xP = (tP , !xP ).
We have to calculate kxB , the tan-
gent vector to the null geodesic at
xB .

Γ̄
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Fig : Light propagation between xA and xB

Knowing the signal time delay Tr

between xA and xB , this vector
can be computed using :

k̂xB
i =

kxB
i

kxB
0

= −c
∂Tr

∂xi
B

[
1 − ∂Tr

∂tB

]−1

,

where Tr can be calculated using
the TTF formalism [1].

Calculating kµ using Tr

Using a standard post-Newtonian approximation of GR and the
IAU 2000 [2] development for the gravitational potentials W and W i, we
can write an equation for the tangent vector k̂xB

i :

k̂xB
i = −N i

AB − 1

c2
(γ + 1)

∫ 1

0

[
WN i

AB + λRAB∂xiW
]
dλ

− 1

c3

∫ 1

0

[
−4W i + λRABN i

AB

(
−4∂xiW i + (γ + 1)∂tW

)]
dλ

+O(c−4),

where the integral is calculated along the Minkowskian line of sight.

A method for relativistic astrometry
Since this equation is rather difficult to integrate for a non-static space-
time, we split the problem in three parts.
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Fig : The 3-parts method

External part : from xA→∞ (source at
infinity) to xC , pointlike mass at
Solar System Barycenter ;

Internal part : from xC to xB , Solar Sys-
tem deflecting bodies moving with
a chosen motion law ;

Matching zone : at xC , defined by set-
ting the angular distance between
kxC

int and kxC
ext at less than 1 µas .

The observable
The real observable, the director
cosines, is obtained when one sub-
stracts the aberration due to the
satellite. So, one has to intro-
duce its motion vi and attitude by
means of a tetrad of 4 quadrivec-
tors Eµ

â (â = 0, 3) and project kxB
i

on it :

cosΦ
(B)
â = − E0

â + k̂xB
i Ei

â

E0
0̂
(1 + k̂xB

i
vi

c )
.

Conclusions
We present a relativistic astromet-
ric modelling based on the TTF
formalism. It’s main advantage is
to avoid the null-geodesic calcula-
tion. Currently, we are working on
its development and the compari-
son to other existing methods.
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Fig. 1. Illustration of a light deflection experiment.

Working at the post-Newtonian approximation of General Relativity and considering the metric tensor
recommended by the International Astronomical Union (Soffel et al. 2003), we obtained an expression of the

deflection functions k̂i at reception point by calculating the derivatives of the time transfer functions as follows
(Bertone & Le Poncin-Lafitte 2011)

k̂i = −N i

− (γ + 1)

c2

∫ 1

0

[
WN i + (1− λ)R

∂W

∂xi

]

zα−(λ)

dλ

+
4

c3

∫ 1

0

[
W i − (γ + 1)

4
(1− λ)RN i ∂W

∂t

+(1− λ)R

(
N .

∂W

∂xi

)]

zα−(λ)

dλ+O
(
c−4
)
, (4.1)
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where γ is a PPN parameter (Will 1993) and the integral is taken along the Minkowskian line of sight

z−(λ) = (ctB − λR,xB − λRN) , (4.2)

with N =
{
N i
}

= (xB − xA)/R, W and W being the gravitational potentials studied in the next section.

5 Towards a ”three zones”modeling

Here we assume the Solar System as an isolated system of N deflecting bodies, thus we neglect gravitational
perturbations due to the galaxy, dark matter, the emitting star itself, etc. Then, potentials W and W are
generated only by the Solar System bodies and can be written

W (t,x) =

N∑

p=0

GMp

rp

[
1−

∞∑

n=2

Jn

(
rpe
rp

)n
Pn

(
kp · x
rp

)]
, (5.1)

W (t,x) =

N∑

p=0

GMpvp
rp

[
1−

∞∑

n=2

Jn

(
rpe
rp

)n
Pn

(
kp · x
rp

)]
, (5.2)

where Pn are the Legendre polynomials, rp = |x−xp(t)| is the spatial distance between the light signal and the
perturbing body p at time t; kp, Mp, J

p
n and rpe denote the unit vector along the axis of symmetry, the mass,

the mass multipole moments and the equatorial radius of body p, respectively.
To calculate the total deflection of light, we need to know the motion of Solar System bodies from the

emission to the reception of the light ray. But if the light is coming from a star, it is quite impossible to give a
simple analytical expression of that motion and we have to use an ephemeris. That is why we propose a three
zones modeling, as illustrated on figure 2, to deal with this problem:

• internal zone: let us introduce a fictitious point-event xC = (ctC ,xC) on the light world line. Spatial
distance of xC from Solar System barycenter is supposed to be small, such as 100 astronomical units. The
deflection functions k̂i at xB is known since the satellite has observed a celestial object. Then, one uses
equation (4.1) to compute xC when we consider the potentials given by equations (5.1) and (5.2). tC − tB
is a small time interval, so we can approximate the motion of Solar System bodies by a straight line of
equation

xp(t) = xBp − (t− tB)vBp , (5.3)

where xBp and vBp are the position and the velocity of body p at time tB , respectively. In this case, we
can derive an analytical formula for equation (4.1).

• external zone: we introduce another fictitious point-event x′C = (ct′C ,x
′
C) on the light world line. Here

x′C is assumed to be very far from the Solar System in such a way that its gravitational field can be
approximated by a Schwarzchild’s metric. This very well known problem has an analytical solution which
can be obtained easily with the time transfer functions (Le Poncin-Lafitte & Teyssandier 2008).

• third zone: this zone is introduced to enable a smooth transition between the internal and external zones.
To achieve this, we want to find a criterion to match the deflection functions at xC and xC′ , respectively.
A possible choice is to stipulate that the angular distance between them must be one tenth below the
desired astrometric accuracy.

6 Conclusion

In this article, we have presented a relativistic modeling for high precision space astrometry, valid in the Post-
Newtonian approximation. This approach allows us to take advantage of a simple motion law for the bodies
during the light propagation through the Solar System, i.e. the internal zone. We also outline a matching
procedure between this zone and an additional external area where Solar System bodies are supposed at rest.
In this work, light deflection is obtained as a boundary value problem solved by the use of the time transfer
functions and consequently a complete solution of the light ray trajectory is avoided.
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Fig. 2. The three zones modeling.
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