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ANALYTICAL EXPRESSION OF THE POTENTIAL GENERATED BY A MASSIVE
INHOMOGENEOUS STRAIGHT SEGMENT
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Abstract. Potential calculation is an important task to study dynamical behavior of test particles around
celestial bodies. Gravitational potential of irregular bodies is of great importance since the discoveries of
binary asteroids, this opened a new field of research. A simple model to describe the motion of a test
particle, in that case, is to consider a finite homogeneous straight segment. In our work, we take this
model by adding an inhomogeneous distribution of mass. To be consistent with the geometrical shape of
the asteroid, we explore a parabolic profile of the density. We establish the closet analytical form of the
potential generated by this inhomogeneous massive straight segment. The study of the dynamical behavior
is fulfilled by the use of Lagrangian formulation, which allowed us to give some two and three dimensional
orbits.

Keywords: Potential, Inhomogeneous-distribution, Asteroids.

1 Introduction

The discovery of irregular small bodies and binary asteroids like Ida and Doctyl, gave a rise to the potential
calculation. Many attempts have been made to approximate the potential. Riaguas et al. (1999) proposed a
homogeneous straight segment. In Elipe et al. (2003) described the motions around (433) Eros with the same
homogeneous model. A harmonic polyhedron was used by Werner and Scheeres for asteroid 4769 Castalia in
Werner et al. (1997) and Werner. (1994). Ellipsoids, material points and double material segment was used by
Przemyslaw et al. (2003)) and Przemyslaw et al. (2006), as the model of irregular elongated bodies. In our work
we give a new idea to models the potential generated by an elongated body. We consider a straight massive
segment with variable density. To be consistent with the geometrical aspect of the asteroid, we use a parabolic
profile. Our work generalize that of Riaguas et al. (1999). In the first part of this work, we establish the closet
forme of the potential generated by an inhomogeneous massive straight segment. In the second part we study
the dynamical behavior of a test particle in the field of the straight segment. We conclude in the last part by
the numerical resolution of the differential equations of motion. In this part we show some orbits in two and
three dimension.

2 Potential calculation

We consider an inhomogeneous straight segment of length 2l and mass M which lies along the (x − axis),
with a parabolic profile of linear mass density expressed by λ(x) = −ax2 + b in which a and b are linked by
a < b

l2 and M = − 2
3al

3 + 2bl. At a point P , the gravitational potential generated by the segment is :

U(P ) = −G
∫
dm

r
(2.1)

Where G is the gravitational constant. r is the distance between P and the infinitesimal mass dm located at H
with abscissa xH in the segment. Fig.1.
Let us consider an inertial reference frame (Oxyz), and let r1, and r2 be the position vectors of the end points

1 Equipe Mécanique Statistique et Astronomie - Laboratoire de Physique Théorique et Appliquée Université Hassan II Ain
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Fig. 1. Straight segment .

H1 and H2 of the straight segment. We define ν = 1
2 (1 + xH

l ) as a new variable of integration with 0 ≤ ν ≤ 1.
After calculation we obtain

U(r1, r2) = 4al2G

∫ 1

0

ν2 − ν − b−al2

4al2√
ν2 + ν

(
r22−r21−4l2

4l2

)
+

r21
4l2

dν (2.2)

After a laborious calculation and simplification we achieve the closet expression of the potential generated at
P :

U(r1, r2) =
G

32l2

(
A1 +A2 ln

(
r2 + r1 − 2l

r2 + r1 + 2l

))
(2.3)

Where
A1 = 16al3 (r2 + r1) + 12al (r2 − r1)

(
r21 − r22

)
and

A2 = 8al2 (r2 + r1)
2 − 16al2r1r2 − 3a (r1 − r2)

2
(r2 + r1)

2 − 16al4 + 32bl2

We define s = r2 + r1, d = r1 − r2 and p = r2r1 as an auxiliaries functions depending only on distances r1 and
r2 of the particle to the end points of the segment. The expression of Eq. (2.3) reduce to :

U(P ) = − G

32l2

{
12alsd2 − 16al3s+

[
8l2a

(
s2 − 2p

)
− 3as2d2 − 16l4a+ 32bl2

]
ln
(
s+ 2l

s− 2l

)}
(2.4)

Eq. (2.4) represent the gravitational potential generated by an inhomogeneous straight segment with a quadratic
profile of density, this expression is our main result, to have more details and study about, (see Najid et al.
2011). The case of constant density (Riaguas et al. 1999) is a particular situation of Eq. (2.4), if we put a = 0
and b = M

2l = λ. We obtain the expression (1) in Riaguas et al. (1999).

3 Dynamical study

We plane to study the dynamical behavior of a test particle, with unit mass, located at P in the field of the
inhomogeneous straight segment. R(O, x, y, z) is the sidereal referential frame, with the cylindrical coordinates
(ρ, θ, x) as in Fig. 2. The differential equations of motion corresponding to ρ, x and θ are given by

ρ̈ = ρθ̇2 +
G

32l2p

(
A3 −

4lρs

s2 − 4l2
A4

)
(3.1)

ẍ =
Ga

16l2p

(
A5 +A6 ln

(
s+ 2l

s− 2l

)
− 2l (xs− ld)

s2 − 4l2
A7

)
(3.2)

ρ2θ̇ = Λ = cste (3.3)

Where

A3 = 32al2pρ ln

(
s+ 2l

s− 2l

)
− 4alρs

(
3d2 + 4l2

)
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Fig. 2. Sidereal referential and the cylindrical coordinates.

A4 = 8l2a
(
s2 − 2p

)
− 3as2d2 − 16l4a+ 32bl2

A5 = 2l (xs− ld)
(
3d2 − 4l2

)
+ 12lsd (ls− xd)

A6 = s (xs− ld)
(
8l2 − 3d2

)
− 8l2x

(
s2 − 2p

)
+ 8l3sd− 3s2d (ls− xd)

and

A7 = 8l2
(
s2 − 2p

)
− 3s2d2 − 16l4 +

32bl2

a

The case of homogeneous profile of density, a = 0 and b = λ = M
2l , lead to the equations

ρ̈ =
Λ2

ρ3
− 2µsρ

p (s2 − 4l2)
ẍ = −2µx

sp

We obtain the equation (3) as in Riaguas et al. (1999). In our case of inhomogeneous straight segment Eqs (3.1),
(3.2) and (3.3) are strongly non linear and coupled. It need a deep numerical treatment. In fact, it is out of
view to plane to work it out in an analytical way.

4 Numerical integration

To have a deep insight about the dynamical behavior of the test particle in the field of the inhomogeneous
straight segment, we have to solve Eqs. (3.1), (3.2) and (3.3). In this system of differential equations the
unknowns are ρ, θ and x. We derive some curves both, in the plan and in the space.

Fig. 3, Fig. 4 and Fig. 5 give some orbits in the plan and in the space corresponding to different initial conditions.
We notice, in a qualitative point of view, the existence of many behavior , we obtain the state: collision, confined
and not confined. More analysis about the curves below are developed in Najid et al. (2011).

5 Conclusion

In this work, we established the analytical expression of the potential generated by a straight segment with a
quadratic profile of its density. This potential model in an accurate manner celestial elongated bodies in the
solar system. We derived some curves (trajectories) both in two and three dimensions. They gave an overview
of the dynamical behavior of massless test particle. A deep study is fulfilled in Najid et al. (2011) by using the
Poincaré surface of section. After the achievement of the dynamical behavior of a test particle in the field of
that segment, fixed in space, we plane, in a next future, to study the case where the segment is in rotation.
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Fig. 3. Trajectories in the plan yz .

Fig. 4. Trajectories in the plan xρ.

Fig. 5. Trajectories in the space.
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