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Abstract. Many spacecrafts are or will be placed in highly eccentric orbits around telluric planets of the
Solar system. Such eccentricities allow to cover a wide range of altitudes, mainly for planetology purposes.
There are also orbits with very high eccentricity around the Earth, especially the GTO (Geostationary
Transfer Orbit) and orbits of some space debris. In this case, the motion is strongly perturbed by the luni-
solar attraction. For various reasons which will be recalled, the traditional tools of celestial mechanics are
not well adapted to the particular dynamic of highly eccentric orbits. Therefore, it is necessary to develop
specific techniques for this configuration. This concerns numerical as well as analytical tools. We will show
how to construct the expression of the disturbing function due to the presence of an external body, well-
suited for highly eccentric orbits. Expansion of the elliptic motion in closed-form by using Fourier series
in multiple of the eccentric anomaly will be presented. On the other hand, classical methods of numerical
integration have often a poor efficiency. We will show the interest of geometric integrators and in particular
the variational integrators.
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1 Introduction

When dealing with highly elliptical orbits, we have to face several difficulties. Due to the fact that such orbits
cover a wide range of altitudes, the hierarchy of the perturbations acting on the satellite changes with the
position on the orbit. At low altitude, the oblateness of the Earth (the so called J2 effect) is the dominant
perturbation while at high altitude the luni-solar perturbation acceleration can reach or exceed the order the
J2 acceleration. This particular configuration requires to develop adapted strategies to propagate the orbit by
means of analytical theories form the one hand and numerical integration on the other hand.

From the analytical point of view, the traditional theories of celestial mechanics are not well adapted to this
particular dynamic. On the one hand, analytical solutions are quite generally expanded into power series of the
eccentricity and so limited to quasi-circular orbits. On the other hand, the time-dependency due to the motion
of the third body is almost always neglected.

Regarding the numerical methods, the traditional integrators can be numerically unstable for high eccen-
tricity if a moderate step size is chosen due to the very fast variation of the perturbation around the perigee.
If the step size is taken extremely small this implies large round-off errors and hight CPU cost. Experiments
show that even numerical integrators with variable step size does nit solve perfectly this problem.

The paper is organized as follows. In Section 2, we propose a new expression of the disturbing function of
the third-body problem which is in closed form with respect to the satellite eccentricity and still permits to
construct an analytical theory of the motion. We will show that the use of the eccentric anomaly instead of
the mean anomaly as fast angular variable fulfills this requirement. In Section 3, we give an overview of the
variational integrators and we will see the interest of using such methods rather than classical integrators for
orbital mechanics problems.
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2 Third-body problem

2.1 Expression of the disturbing function of the third-body problem

Let us consider a satellite of position vector r = ru orbiting a central body and a third body of position vector
r′ = r′u′, with u and u′ unit vectors. The disturbing function R of the third-body problem can be expressed
into spherical coordinates (r, φ, λ) using the traditional expansion in Legendre polynomials Pn(x) as follow

R =
µ′

r′

∑
n≥2

( r
r′

)n
Pn(u · u′) , (2.1)

where µ′ = Gm′, m′ being the mass of the third body and G the gravitational constant.
In order to construct an analytical theory, it is more suitable to express (2.1) as function of orbital elements

(semi-major axis a, eccentricity e, inclination I, argument of perigee ω, longitude of the ascending node Ω and
mean anomaly M) or equivalent variables. From several works as Kaula (1962), Giacaglia & Burša (1980),
Lane (1989) or yet Brumberg (1995), we were able to obtain a general expression of the disturbing function
into Hill-Whittaker canonical variables: r, ṙ, θ = ω + ν, G =

√
µa(1− e2), Ω and H = G cos I, with ν the true

anomaly:

R =
µ′

a′

∑
n≥2

n∑
m=−n

n∑
m′=−n

n∑
p=0

n∑
p′=0

( a
a′

)n ( r
a

)n(a′
r′

)n+1

Dn,m,m′,p,p′ exp i
(
Ψn,m,p −Ψ′n,m′,p′

)
, (2.2a)

Dn,m,m′,p,p′(I, I ′, ε) = (−1)m−m
′ (n−m′)!

(n+m)!
F̃n,m,p(I)F̃n,m,′p′(I ′)Un,m,m′(ε) , (2.2b)

Ψn,m,p = (n− 2p)θ +mΩ , (2.2c)

Ψ′n,m′,p′ = (n− 2p′)θ′ +m′Ω′ , (2.2d)

where the F̃ -functions are related to the Kaula’s inclination functions (see Kaula (1961)), ε is the obliquity and
the U -functions are to the Wigner formula (see Sneeuw (1992)) giving the components of the rotation matrix
between equatorial to ecliptic plane related.

In order to have a perturbation fully expressed in orbital elements, we expand the functions of the elliptical
motion (r/a)n exp iν and (a′/r′)n+1 exp iν′ into Fourier series with respect to an angular variable and coefficients
which depend of the eccentricity. Quite generally, these functions are expanded in multiples of the mean anomaly
as follow (see for example Kaula (1962), Giacaglia (1974))( r

a

)n
exp imν =

∞∑
s=−∞

Xn,m
s (e) exp isM , (2.3)

where the Xn,m
s are the so-called Hansen coefficients. In the general case, the series (2.3) always converge as

Fourier series but can converge rather slowly (see e.g Brumberg & Brumberg 1999). Only in the particular
case where e is small, the convergence is fast thanks to the d’Alambert property which ensure that e|k−q| can
be factorized in Xn,k

q (e). That is why the method is reasonably efficient for most of the natural bodies (in
particular the Sun and the Moon) but can fail for satellites moving on orbits with high eccentricities. In this
case, Fourier series of the eccentric anomaly E, are much more efficient :( r

a

)n
exp imν =

∞∑
s=−∞

Zn,m
s exp isE , (2.4)

where the Z-functions are called the Hansen-like coefficients. Expressions of these coefficients are given in
Brumberg & Fukushima (1994) and can be computed using recurrence relations (see Lion & Métris (2011)).
Using this development, we have the double advantage when 0 ≤ |m| ≤ n (which occurs in the third-body
problem) that these coefficients admit a closed-form representation and that the sum (2.4) is exactly limited to
s = ±n (coefficients are null for |s| > n).

Using the Fourier series (2.3) and (2.4) we show in Lion et al. (2011) that the disturbing function R takes
the form:

R =
∑
n≥2

n∑
m=−n

n∑
m′=−n

n∑
p=0

n∑
p′=0

n+1∑
q=−n−1

+∞∑
q′=−∞

a

r
An,m,m′,p,p′,q,q′ exp iΘn,m,m′,p,p′,q,q′ , (2.5a)
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An,m,m′,p,p′,q,q′ =
µ′

a′

( a
a′

)n
Dn,m,m′,p,p′(I, I ′, ε)Zn+1,n−2p

q (e)X−n−1,n−2p
′

q′ (e′) , (2.5b)

Θn,m,m′,p,p′,q,q′ = Ψ̃n,m,p,q − Ψ̃′n,m′,p′,q′ , (2.5c)

Ψ̃n,m,p,q = qE + (n− 2p)ω +mΩ , (2.5d)

Ψ̃′n,m′,p′,q′ = q′M ′ + (n− 2p′)ω′ +m′Ω′ . (2.5e)

2.2 Lie transformations perturbation method

The idea is to use a perturbative method based on the time-dependent Lie transform Deprit (1969) in order to
obtain an approximated analytical solution of the third-body problem. Because the canonical variable h = ω is
not ignorable and g is not automatically removed in the same time that the fast angle l = M after a canonical
transformation (contrary to the J2 problem case), our initial Hamiltonian H0 of order 0 contains not only
the keplerian energy, but also the secular part of the J2 problem. The disturbing function R belongs to the
hamiltonian H1 of order 1. In that way, H0 depends of the three momenta L, G and H which will allow to
eliminate the three conjugate angles l, g and h from the transformed hamiltonian. Next, we use the homological
equation providing the Lie generator W and the new Hamiltonian K at first order. The new Hamiltonian K is
taken such as it does not depend on any angular variable. The Lie generator W1 is obtained by solving a PDE
involving variables which are linear with time and the eccentric anomaly which is not linear with time. Solution
of W1 can be computed with by means of two different methods. If we seek a separable solution of the PDE we
find the exact solution involving Anger and Weber functions. The other method is to solve the PDE by means
of a recursive process which may be more suitable for our analytical theory.

3 Variational integrators

3.1 Philosophy

Variational integrators derive from a discrete version of the least action principle. Instead of a continuous path
q(t) for t ∈ [ti, tf ], we consider a discrete path q : {t0 = ti, t1, . . . , tk, . . . , tN = tf} where k,N ∈ N, qk being an
approximation to q(tk). Hence, the Lagrangian L(q, q̇, t) of the system is approximated on each time interval
[th, tk+1] by a discrete Lagrangian Ld(qk, qk+1, h), with h = tk+1− tk being the time interval. For conservatives
systems, we just compute the principle of discrete stationary action, which gives the discrete Euler-Lagrange
(DEL) equations and the discrete Hamilton equations (see West (2004)):

pk = −D1Ld(qk, qk+1) , pk+1 = D2Ld(qk, qk+1), (3.1)

where DiL denotes the derivative of L with respect to the i slot. For (qk, pk) known, we can compute qk+1 then
pk+1.

In case of dissipative or forced systems, the discrete action can be modified by adding the non-conservative
force and using the Lagrange d’Alembert principle.

The variational integrators preserve the geometric structure of the mechanical system. This has two con-
sequences. Firstly, the schemes are symplectic and so, we have a good energy behaviour for equal time steps.
Secondly, momenta and symmetries are conserved (via the discrete Noether’s theorem). More over, one can ob-
tain higher-order methods by using higher-order quadrature to approximate the Lagrangian (e.g, Gauss-Lobatto)
as our variational integrator RKN6 tested in the following section.

3.2 Numerical tests for conservative system

To illustrate the performance of the variational integrators we consider the keplerian problem which is a simple
and an integrable system. The Lagrangian describing this problem is

L(q, q̇) =
1

2
q̇T q̇ − V (q) and V (q) = − µ

‖q‖
, (3.2)

where q = q(t) ∈ R2 is the trajectory of body orbiting the primary body (Earth) and µ is the gravitational
parameter. The equations of motion are given by the Euler-Lagrange equations and the trajectories of this
conservative system have two conserved quantities: the energy of the system and the total angular momentum.
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So, the easiest way to check on the reliability of integration schemes is to watch the behavior of these
conserved quantities. The algorithms for which we present results are:

• RK6: Explicit Runge-Kutta 6-order, with fixed stepsize h=20s and h=60s.

• Symmetric RKN6∗: Symmetric and reversible Runge-Kutta Nyström 6-order, using the 4-stage Lobatto
IIIA† method, with fixed stepsize h=60s (see Cash & Girdlestone (2006)).

• Variational RKN6: Variational Runge-Kutta Nyström 6-order, using the Gauss-Lobatto quadrature rules
with a 4-stage Lobatto IIIA method and a fixed stepsize h=60s. This integrator was built from the papers
of Farr & Bertschinger (2007) and Farr (2009).

• Ode113: variable order Adams-Bashforth-Moulton (PECE) solver in Matlab with adaptative stepsize.

As initial conditions, we have chosen an highly elliptical orbit with: a = 36890.683 km, e = 0.8. The
integration is performed over 325 days corresponding to 400 orbits.

The relative error in the energy for each integrators is plotted in Fig. 1. As expected, we can see that the
classical integrators RK6 and ode113 do not preserve the energy of the system, even if ode113 uses an adaptative
stepsize. The variational RKN6 preserves better energy than the symmetric and reversible RKN6.

Results for the relative error in the total angular momentum behaviour lead to the same conclusion. The
standard integrators have a divergent angular momentum, while the others it is conserved with at most the
finite fluctuations.
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Fig. 1. Relative error in the energy behaviour of integrators for a conservative system

Conservation properties are not the only indicators for the quality of integrators. The amount of compu-
tational resources consumed in this process is equally important, as any algorithm can be trimmed to produce
highly accurate results. Using for the variational integrators a predictor of high order simply derived from finite
difference methods, we have reduced up to 35 percent the number of function evaluation.
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