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THE GRAVITATIONAL POTENTIAL OF AXIALLY SYMMETRIC BODIES FROM A
REGULARIZED GREEN KERNEL
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Abstract. The determination of the gravitational potential inside celestial bodies (rotating stars, discs,
planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential
is classically found from a two-dimensional integral over the body’s meridional cross-section. Because it
involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for
homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical
integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only
for numerical calculus but also to generate approximations, in particular for geometrically thin discs and
rings.
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1 Introduction

According to Newton’s law, the potential ψ associated with two point masses at a relative distance δr from
each other diverges as δr → 0. As a result, for any continuous body, the gravitational potential is obtained by
integrating a function which diverges everywhere in the inside. The expansion of the Green kernel into Legendre
polynomials (which circumvent this singularity problem), as usually done, leads to numerical oscillations due to
truncations (Clement 1974). When the body is axially symmetric, the integration over the polar angle φ results
in the well known expression (e.g. Durand 1953):

ψ(R,Z) = −G
∫
volume

ρ(~r′)

|~r − ~r′|
da dz a dφ −→ −2G

∫
section

ρ(a, z)

√
a

R
kK(k) da dz (1.1)

where K is the complete elliptic integral of the first kind, k is the modulus, with (a+R)2 + (z−Z)2 = 4aR/k2.

The singularity is still present here since |~r− ~r′| → 0 now corresponds to k → 1. Figure 1 shows the logarithmic
divergence of the function K(k) near unity. Unfortunately, there is no way to obtain a more advanced form
for the above bidimensional integral, except for a few special cases. For instance, in the absence of any radial
density gradient, the integration along the radial direction can be performed analytically. This fundamental
result, described in Durand (1953) and rediscovered in the astrophysical context by Lass & Blitzer (1983), is:

ψ(R,Z) = −G
∫
boundary

ρ(z)

[
4
√
aR

E(k)

k
+
a2 −R2 − (z − Z)2√

aR
kK(k)− (z − Z)Ω

]
dz (1.2)

where E is the complete elliptic integral of the second kind, and Ω is the solid angle sustained by the disc (radius
a, altitude z) when seen from point (R,Z). Actually, this expression is nothing but the total potential due to a
collection of infinitely thin circular plates (i.e. discs) piled up along the z-direction (see Fig. 2a). This kind of
formula is therefore well suited not only for homogeneous bodies but also for inhomogeneous bodies such that
∂aρ = 0. The integrand in Eq.(1.2) being regular, there is no difficulty to get accurate potential values.

There is apparently no equivalent form of Eq.(1.2) corresponding to bodies having zero vertical density
gradients. In other words, the potential due to a semi-infinite homogeneous cylinder might not exist in a closed
form. This question is the subject of a longstanding debate. As a matter of fact, the potential and forces due
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Fig. 1. Part of the initial Green kernel kK(k) and part of the new regular kernel kE(k); see Eqs.(1.1) and (2.1).
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Fig. 2. Two different configurations of axially symmetric bodies, with their geometrical cross-section where ρ 6= 0 (shaded

zone) and boundary (bold).

to charged, toroidal structures are required in many contexts of research including Biology, Electromagnetism
and Plasma physics. In his remarkable textbook, Durand (1953) mentions that “[...]Le calcul analytique de
l’intégrale du potentiel parâıt difficile [...]”. He can only give a solution in the form of infinite series involving
Legendre polynomials. This series is however an alternate series which poorly converges, as usually observed
(Clement 1974). A constant and careful bibliographic search shows that this question is still open.
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2 A new regularized kernel ?

After some effort and investment in integral calculus involving elliptic integrals, we have recently discovered a
simple way to bypass the singularity of Green kernel precisely in the case where ∂zρ = 0. The result is based
on the derivation of this following new definite integral:∫

kK(k)dz =

∫
kE(k)dz + (z − Z)k

[
K(k)−m′2Π(m, k)

]
, (2.1)

where Π(m, k) is the complete elliptic integral of the third kind, m = 2
√
aR/(a+R) is the characteristic, and

m′ is its complementary (i.e. m′
2

+m2 = 1). All the details of the derivation will be presented in a forthcoming
paper. The first term in the right-hand-side of Eq.(2.1) is fully regular since E(k) ∈ [π2 , 1]. Figure 1 compares the
two kernels kK(k) and kE(k). The second term is also fully regular: the divergence of the K- and Π-functions
as k and m approach unity is cancelled out by the presence of the two vanishing factors m′ and (z − Z). The
potential of any vertically homogeneous axially symmetric body is then found from the expression:

ψ(R,Z) = −2G

∫
boundary

ρ(a)

√
a

R

{
(z − Z)k

[
K(k)−m′2Π(m, k)

]}
da−2G

∫
section

ρ(a)

√
a

R
kE(k)dzda (2.2)

This expression is exact. It is interpreted as the total potential due to a collection of infinitely thin (semi-
infinite) coaxial cylinders∗ side by side along the a-direction (see Fig. 2b). In some sense, Eqs.(1.2) and (2.2)
are complementary: the use of the one or the other depends on the shape of the body and on it density structure
as well.

3 Note on Green’s theorem for fully homogeneous bodies

For fully homogeneous bodies, we have ∂aρ = ∂zρ = 0, and so Eqs.(1.2) and (2.2) are formally equivalent.
The ability to integrate analytically Eqs.(1.2) or (2.2) must be considered (this is for instance possible for the
homogeneous sphere). In this purpose, the conversion of the double integral in the right-hand-side of Eq.(1.1)
into a line (or contour) integral is possible by using Green’s theorem, provided the kernel is the curl of a certain

field ~F . Actually, for any vector field ~F (Fa, Fz), Green’s theorem writes in the present context:∫
section

∇× ~Fdadz · ~uφ =

∮
boundary

~F · ~d` (3.1)

where ~d` is an infinitesimal displacement along the boundary (oriented counter-clockwise). This powerful
approach is stressed in Ansorg et al. (2003) who compute new figures of equilibrium and bifurcations from

the Maclaurin sequence. Indeed, they have determined a vector ~F such that:√
a

R
kK(k) ∝ ∇× ~F · ~uφ =

∂Fz
∂a
− ∂Fa

∂z
(3.2)

and so, from Eq.(1.1), they immediately get the potential, namely:

ψ(R,Z) ∝
∫
boundary

(Fada− Fzdz). (3.3)

This allows to derive the potential everywhere in space through a single integral, which is numerically very
advantageous. In practice, it seems however difficult to reach high accuracy when the potential is required just
onto the boundary (or contour), and so the numerical treatment must still be faced with care (Ansorg et al.
2003).

∗For finite size bodies, one must subtract the contribution of two semi-infinite cylinders, after shifting the one with respect to
the other.
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4 Concluding remarks

The new, regular kernel appearing in Eq.(2.2) is a substitute for the genuine Green kernel whose singularity
avoids, from the numerical point of view, any direct treatment. This kernel is particularly interesting in the
context of geometrically thin discs and rings. For such objects actually, the radial and vertical structures are
often decoupled (Shakura & Sunyaev 1973) and the density of gas is uniform in the direction perpendicular
to the equatorial plane (but variable in radius). The formula is indeed helpful at the numerical level even for
axially symmetric bodies having radial and vertical density gradients in the framework of the splitting method
(Huré 2005). It is also useful at the theoretical level, for instance to derive reliable approximations for the
mid-plane gravitational potential and acceleration. In this case for instance, we have k ≈ m at the first order
in z/(a+R). Thus, we have simply:∫

section

ρ(a)

√
a

R
kE(k)dzda ≈

∫
boundary

Σ(a)

√
a

R
mE(m)da (4.1)

where Σ is the local surface density. More generally, it would be interesting to convert the section integral in
Eq.(2.2) into a contour integral via Green’s theorem. This question is currently under study.
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