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A MODEL FOR THE FLUX-R.M.S. CORRELATION IN BLAZAR VARIABILITY OR
THE MINIJETS-IN-A-JET STATISTICAL MODEL

J. Biteau1 and B. Giebels1

Abstract. Very high energy gamma-ray variability of blazar emission remains of puzzling origin. Fast flux
variations down to the minute time scale, as observed with H.E.S.S. during flares of the blazar PKS 2155-
304, suggests that variability originates from the jet, where Doppler boosting can be invoked to relax causal
constraints on the size of the emission region. The observation of log-normality in the flux distributions
should rule out additive processes, such as those resulting from uncorrelated multiple-zone emission models,
and favour an origin of the variability from multiplicative processes not unlike those observed in a broad
class of accreting systems.

We show, using a simple kinematic model, that Doppler boosting of randomly oriented emitting regions
generates flux distributions following a Pareto law, that the linear flux-r.m.s. relation found for a single zone
holds for a large number of emitting regions, and that the skewed distribution of the total flux is close to a
log-normal, despite arising from an additive process.
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1 Introduction

The outbursts of PKS 2155-304 observed at very high energy (VHE, E >100 GeV) γ-rays with H.E.S.S. in July
2006 (Aharonian et al. 2007) constitute ”the most dramatic [event] seen from any TeV γ-ray source” (Longair
2010) and this data-set indeed is a fantastic laboratory for the physics of blazars. Blazars are the Active
Galactic Nuclei (AGN) with jets closely aligned with the line-of-sight (see e.g. Urry & Padovani 1995), they
may be the best objects to probe this collimated emission of AGN, probably powered by accretion onto the
central super-massive black hole (SMBH). Blazars are the prominent class of extragalactic sources detected at
high energy (HE, 100 MeV< E <100 GeV) and VHE γ-rays. During scarce periods of high-state emission
(so called ”flares”), the VHE non-thermal emission can exhibit puzzling properties, the most striking of them
probably being hyper-variability. The latter is characterized by an apparent violation of causality, i.e. a flux
varying faster than the time needed for information to travel across the emitting region (light crossing time). For
example, during the dramatic outbursts of PKS 2155-304 in July 2006, H.E.S.S. observed significant variations
down to three minutes when the minimum size of the emitting region, bounded by the Schwarzschild radius of
the SMBH, is estimated to be at least of three light-hours.

The commonly accepted way out this apparent violation of causality is to invoke the relativistic Doppler
effect, which induces an observed variation-rate faster by a factor δ, the Doppler factori, than the variation time-
scale in the emitting region frame. Doppler factors has large as 60 have been invoked to resolve the minute-hour
discrepancy and to explain the optical thinness of the region to its own radiation (Begelman et al. 2008). The
Doppler factor is related to the Lorentz boost and to the orientation of the emitting region, called minijet in the
following, compared to the line-of-sight. An aligned region would then result in a maximal emission, a ”flare”,
an the misalignment would result in sharp drop of the flux.

Several authors (Ghisellini & Tavecchio 2008; Giannios et al. 2009; Narayan & Piran 2012) have studied the
flux resulting from the emission of multiple minijets, without however investigating its statistical properties.
During the tremendous high-state of PKS 2155-304, its flux indeed exhibited an highly skewed distribution,
interpreted in H.E.S.S. Collaboration, Abramowski et al. (2010) as log-normalii and a linear correlation between
the sampleiii flux and its r.m.s. was observed.

1 Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
iThe derivation of the Doppler factor is extensively discussed in the following.
iiIf the logarithm of a variable is normally distributed then this variable has a log-normal distribution.
iii”Sample” refers here to quantities computed in successive time-windows within the light-curve.
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2 Statistical properties of the flux of the minijets-in-a-jet

The textbook derivation of the Doppler factor δ is based on the transformation of velocities in special relativity.
We hereafter exploit the fact that δ is the ratio of the observed to emitted photon energies, where the initial
energy is expressed in the frame of isotropic emission. The Doppler effect does not explicitly depend on the
energy of an hypothetical photon, but the use of this proxy largely simplifies the problem especially for geometries
such as shown in Fig. 1, where a minijet is randomly oriented in a jet non-aligned with the line of sight.

Fig. 1. Schematic view of

the minijet scenario geometry.
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The transformation of the four-momentum, where only photons with energy E travelling along the line of
sight are considered (py = pz = 0 and px = E), is given in Eq. 2.1 :
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where c and s are the cosine and sine functions.
Inverting this relation, the time-like component of the equation reads Eminijet = δ−1E, with the inverse of

the Doppler factor δ−1 = γΓ(1 + Σβcψ − (Σ + βcψ)cθ) + γβsθsψcϕ. In the blazar case, corresponding to a jet
closely aligned with the line-of-sight, θ ∼ 0, the extrema of the Doppler factor in the ultra-relativistic limit are
achieved for δ ≥ Γ/γ and δ ≤ 4Γγ.

Calling I(E) = EdN/dE the flux intensity at the energy E, the quantity I(E)/E3 is a Lorentz invariant
(see, e.g., Rybicki & Lightman 1979). Note that the natural energy dependence of a non-thermal spectrum,
such as observed at VHE, is a power-law model I(E) ∝ E−s, where s is the spectral index. Then, the Doppler
effect impacts the intensity by a factor δ3+s, which for θ = 0 and µ = cψ reads :

I(E) ∝ [γΓ(1− Σ)(1− βµ)]
−3−s

E−s ≡ (4Γγ)3+sg(µ)E−s (2.2)

where g(µ) = [(1 + Σ)(1 + β)/4 × (1− β)/(1− βµ)]
3+s ≤ 1 and with µ uniformly distributed in [−1, 1], as-

suming an isotropic distribution of the minijets in the jet frame. The distribution of the intensity normalized
to its maximum, IN = g(µ), can easily be derived using the relation between its probability density function
(PDF), fI(IN ), and the PDF of µ, fC(µ) = 1/2, which, by conservation of the cumulative distribution function
under a change of variable, reads fI(IN ) =

∣∣∂g−1(IN )/∂I
∣∣ fC (g−1(IN )

)
.
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The PDF of the normalized distribution is then fI(IN ) = (1 + Σ)/2β ×
[
4γ2(3 + s)

]−1 × I−1−1/(3+s)N . This
power-law dependence of index 1+α, where α = 1/(3+s), is characteristic of Pareto distributions. Such variables
are well known by geophysicists or economists (see the examples given in Newman 2005) and exhibit statistical
properties of uttermost interest in the astrophysical case studied here.

First, these variables share a common feature with log-normal variables: they can be seen as the exponential
of an underlying variable. Indeed, if a random variable X follows an exponential distribution fX(x) = exp(−αx),
then Y = exp(X) is Paretian. Let’s assume a small variation dx of X around x, then the resulting variation dy
of Y around y = h(x), where h is the exponential function, simply reads (dy)2 = h′(x)2(dx)2 = exp(x)2(dx)2 =
y2(dx)2. Herein, y represents the sample flux of the source while dy is proportional to its r.m.s., so that the
previous equation is directly the linear relation between the r.m.s. and its flux.

Secondly, ideal (i.e. un-bounded) Pareto distributions do not follow the central limit theorem (CLT). The
CLT indeed relies on the hypothesis that the summed variables admit finite first and second order moments,
which are undefined for Pareto distributions with α ≤ 1 and α ≤ 2 respectively. A generalized CLT can be
applied in such situations and states that the sum of Pareto variables, herein the sum of the emission of minijets,
tends to a maximally skewed α-stable distribution (see e.g. Zaliapin et al. 2005; Voit 2005).

As shown in the following, such heavy tailed distributions can easily be mistaken for log-normal distributions,
with the limited dynamic range inherent to observations. Moreover, the tail of an α-stable distribution is a
power-law of index 1 + α, so that the linearity between the flux and its r.m.s. is conserved when adding the
contributions of a large number of components.

3 Simulation of N minijets-in-a-jet

To generate smooth flux-distributions from Eq. 2.2, a simulation with 108 iterations, called hereafter time-steps,
for a number of minijets N ∈ {1, 10, 30, 102, 3× 102, 103, 3× 103, 104} is performed assuming Lorentz factors of
the jet Γ = 5 and of the minijets γ = 5 (though the numerical values given in the following depend on these
parameters, the qualitative results, which are the interest of this study, do not).

The distributions of the logarithm of the minijets summed flux intensities are shown in Fig. 2. For N ≥ 103,
the distributions exhibit a peak followed by a power-law tail of index 1 +α. The right-side histograms in Fig. 2
shows the last two distributions, obtained for N = 3×103 and N = 104 minijets, as an observer could see them.
With a limited dynamic range (confusion of the low flux bins) and limited statistics or time-coverage (inability
to record a significant amount of high flux points), these distributions exhibit similarities with a log-normal
process, as shown by the solid black curves.
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Fig. 2. Left: Distribution of the logarithm of the intensity of N independent and randomly oriented minijets. The

number of minijets N increases from left to right with N ∈ {1, 10, 30, 102, 3 × 102, 103, 3 × 103, 104}. Even for a large

number of regions, asymmetrical, tailed distributions are obtained. Right: Distribution of the logarithm of the flux of

N minijets for N = 3 × 103 (left) and N = 104 (right). The continuous black and grey dashed lines represent the

best-fit with a log-normal and normal flux distributions, respectively. Note the linear y-axis.

The relation between the flux and its r.m.s. is shown for N = 1 and N = 104 minijets in Fig. 3. Using a
simulation of 105 time-steps, the sample flux and its r.m.s. are computed in 10-points wide windows and are
grouped in 50 bins of flux for clarity. The uncertainties on the r.m.s. are derived from the variance in each bin.
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Fig. 3. Sample RMS as a

function of the sample flux

of N = 1 minijet (left) and

the sum of N = 104 mini-

jets (right). Linear relations

are found in both cases, with

a zero x-intercept in the first

case and a positive one in the

second.
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While for N = 1, corresponding to a power-law distribution, a strict proportionality between the flux and
its r.m.s. is achieved, a positive x-intercept can be seem for N = 104. This intercept corresponds to the peak
of the emission shown in Fig. 2, i.e. to the flux for which the emission of the single components pile-up.

4 Conclusion

The dramatic outbursts of PKS 2155-304 constitute an extraordinary set of observables that are highly con-
straining for models of blazar variability. The observed statistical properties of the emission do not necessarily
advocate for a multiplicative process, as could be inferred from a log-normal distribution (see e.g. Uttley et al.
2005; McHardy 2008, in the broader context of accreting objects) and these observables can be reproduced
within an additive model summing Pareto variables.

We show that such a Pareto distribution of the flux of a single component is a natural consequence of
minijets-in-a-jet modellings, originally developed to explain the hyper-variability, i.e. the apparent violation of
causality observed in VHE light-curves. In addition to the skewed distribution of the flux, the sums of Pareto
variables follow the linear flux-r.m.s. relation and are then a good representation of both temporal and statistical
properties of the emission.

The potential evolutions of this model are diverse, since it can in principle be extended to any astrophysical
sources where several boosted regions are involved. Remarkably, Clausen-Brown & Lyutikov (2012) recently
derived a particular case (Γ = 1) of this minijets-in-a-jet statistical model to explain the flares of the Crab
in the high energy domain. For this study, we did not focus on the properties of the emission in the Fourier
space or as a function of energy, which would require a temporal and an energy-dependent prescriptions. Such
developments will certainly be led in future studies.
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