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STOCHASTIC PERTURBATION OF THE TWO-BODY PROBLEM
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Abstract. We study the impact of a stochastic perturbation on the classical two-body problem in particular
concerning the preservation of �rst integrals and the Hamiltonian structure. Numerical simulations are
performed which illustrate the dynamical behavior of the osculating elements as the semi-major axis, the
eccentricity and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
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1 Introduction

The stability of the solar system is a famous open problem in celestial mechanics (see J. Moser (1978),S. Marmi
(1999),J. Laskar (2010),J. Féjoz (2013a)). Since the discovery by Newton of the gravitation law, a mathematical
approach to this problem is to study the stability of the n-body problem as an ideal model for the behavior of
planetary systems. Numerous advances have been made in this direction. From the analytical point of view,
recent contributions deal with application of the Kolmogorov-Arnold-Moser (KAM) theorem and Nekhoroschev
theory to the n-body problem (see J. Féjoz (2004),M. Herman (1998),L. Niederman (1996)) for stability and
Arnold's di�usion (J. Xia (1993),J. Xia (1994),J. Féjoz (2013b)) for instability. On the numerical side, simula-
tions over very large time scales of the n-body problem in particular by S. Tremaine and Wisdom and J. Laskar
give insight that the "solar system" is unstable (chaotic) over very large time.

A common feature of all these works is to deal with a deterministic model for the planetary motion. However,
as pointed out by D. Mumford (1999), the meaning of such an assumption with respect to the real behavior of
planetary systems is far from being satisfying. D. Mumford remarks that "a major step in making the equation
more relevant is to add a small stochastic term".

However, adding a stochastic term is far from being trivial because the nature and origin of such a contri-
bution is more or less unknown. A signi�cant step has been done in Sharma & Parthasarathy (2007) (see also
J. Cresson (2011)). Using observations made by I. Mann et al. (2004) about the stochastic �uctuations of the
density of the zodiacal dust around the sun, Sharma & Parthasarathy (2007) propose a stochastic perturbation
induced by a cloud whose density �uctuates stochastically.
in the whole text In this paper, we continue the study initiated by S.N. Sharma and H. Parthasarathy in several
directions : �rst, we make a new derivation of the stochastic perturbation induced by a cloud having a stochas-
tically �uctuating density. We then study how the classical properties of the two-body problem are a�ected by
this stochastic perturbation. In particular, we discuss the persistence of �rst integrals like energy and angular
momentum and the behavior of the Hamiltonian structure in the context of stochastic Hamiltonian systems
introduced by Bismut (1981). Third, we perform numerical simulations in order to observe the dynamical
behavior of the osculating elements. The accuracy of the numerical integrator is also discussed. Finally, we
derive the stochastic version of Gauss's equations for the variations of the osculating elements which allows us
to determine the contribution of the stochastic terms in the observed dynamical behavior.
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2 The two-body problem

We follow the book (Goldstein (2002),Chap.3) to which we refer for more details. In the whole text the symbol
T denotes the transpose of a vector.

2.1 Description

Let S and P be two bodies and MS and MP their masses. The body S is supposed to be the central body
typically a star and P is the orbiting body typically a planet or a satellite. The motion is supposed to be in
an elliptic con�guration. The reduced mass is m = MSMP

MS+MP
and the potential coe�cient is k = GMSMP where

G is the gravitational constant. We de�ne (S, ~x, ~y) to be a �xed frame attached to S and ~r the position vector
of P in this reference frame with φ his position angle. The elliptical motion is described with the semi-major
axis a, the eccentricity e and the pericenter angle ω. We associate the polar reference frame (S, ~eR, ~eT ) where

~eR
T = (cosφ, sinφ) and ~eT

T = (− sinφ, cosφ). In this reference frame we have ~r = r ~eR where r is the norm of
the position vector. The motion is illustrated in Fig. 1

Fig. 1. The classical two body problem.

2.2 Equations of motion

The equations of motion for the two-body problem are given by
dr
dt = v,
dφ
dt = w,
dv
dt = rw2 − k

mr2 ,
dw
dt = − 2vw

r .

(2.1)

Classical conserved quantities of motion are the angular momentum and energy of the system de�ned by

M = mr2w, (2.2)

H =
1

2
m(v2 + r2w2)− k

r
. (2.3)

We will use also the Laplace-Runge-Lenz vector de�ned by ~A = m~v ∧ ~L− km~eR where ~v is the velocity vector
and ~L = m~r ∧ ~v is the angular momentum vector.

3 Perturbation induced by a dust-cloud

In Sharma & Parthasarathy (2007) the authors consider a stochastic perturbation induced by a cloud with a
density which �uctuates stochastically. This assumption is supported by observations made by I. Mann et al.
(2004) about the zodiacal dust around the Sun. These �uctuations comes from comets and asteroids which
produce dust when they come near the Sun due to collisional fragmentation and sublimation, radiation pressure
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Fig. 2. The dust sphere.

acceleration and rotational bursting. In order to simplify the computations, we assume in the following that
the dust cloud is a sphere.

The force ~F induced by a dust sphere of constant density ρ is only a radial force ~FT = ( 4
3πGρr, 0) (see

Goldstein (2002) p.122). Our main assumption is that the mean density of this dust cloud is �uctuating
randomly that is to say the density is a function of time de�ne as

ρ(t) = σrW
r
t (3.1)

where σr is a constant and W r
t is a "white noise". The random force takes then the form

~FT = (mrσrW
r
t , 0) (3.2)

Now if we add an isotropic tangential component induced by other physical process we obtain

~FT =
(
mrσrW

r
t ,mσφW

φ
t

)
(3.3)

where σφ is a constant and Wφ
t is also a "white noise" independent of W r

t .

4 Stochastic perturbation of the two-body problem

4.1 Reminder about stochastic di�erential equations

We remind basic properties and de�nition of stochastic di�erential equations in the sense of Itô. We refer to
the book Øksendal (2003) for more details.

A stochastic di�erential equation is formally written (see Øksendal (2003),Chap.V) in di�erential form as

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, (4.1)

which corresponds to the stochastic integral equation

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs, (4.2)

where the second integral is an Itô integral (see Øksendal (2003),Chap.III) and Bt is the classical Brownian
motion (see Øksendal (2003),Chap.II,p.7-8).

An important tool to study solutions to stochastic di�erential equations is the multi-dimensional Itô formula

(see Øksendal (2003),Chap.III,Theorem 4.6) which is stated as follows :
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We denote a vector of Itô processes by XT
t = (Xt,1, Xt,2, . . . , Xt,n) and we put BT

t = (Bt,1, Bt,2, . . . , Bt,n),
dBT

t = (dBt,1, dBt,2, . . . , dBt,n). We consider the multi-dimensional stochastic di�erential equation de�ned by
(4.1). Let f be a C2(R+ × R,R)-function and Xt a solution of the stochastic di�erential equation (4.1). We
have

df(t,Xt) =
∂f

∂t
dt+ (∇T

Xf)dXt +
1

2
(dXT

t )(∇2
Xf)dXt, (4.3)

where ∇Xf = ∂f/∂X is the gradient of f w.r.t. X, ∇2
Xf = ∇X∇T

Xf is the Hessian matrix of f w.r.t. X, δ is the
Kronecker symbol and the following rules of computation are used : dtdt = 0, dtdBt,i = 0, dBt,idBt,j = δijdt.

4.2 The stochastic two-body problem

The general form of the equations of the perturbed two-body problem by a planar force ~F = (Fr, Fφ) is easily
compute and reads 

dr
dt = v,
dφ
dt = w,
dv
dt = rw2 − k

mr2 + Fr
m ,

dw
dt = − 2vw

r +
Fφ
mr ,

(4.4)

which gives, replacing F by the random force (3.3) :
dr
dt = v,
dφ
dt = w,
dv
dt = rw2 − k

mr2 + rσrW
r
t ,

dw
dt = − 2vw

r +
σφW

φ
t

r .

(4.5)

The classical way to give a sense to this set of equations is to replace Wt by a suitable stochastic process called
the white noise process which is heuristically obtained as increment of the Brownian motion Bt (see Øksendal
(2003),p.7-8). We then obtain a stochastic di�erential equation in Itô sense given by

dr = vdt,
dφ = wdt,
dv =

(
rw2 − k

mr2

)
dt+ rσrdB

r
t ,

dw = − 2vw
r dt+

σφ
r dB

φ
t ,

(4.6)

where Brt and Bφt are independent. This set of equations describes what we called the stochastic two-body

problem in the following.

5 Symmetries and First integrals

First integrals and symmetries play a fundamental role in classical mechanics and in particular for the study of
the deterministic n-body problem (see V.I. Arnold (1989)). A natural question is to know if symmetries and
�rst integrals of a given deterministic system persist in an appropriate sense. In this Section, we remind the
de�nition of weak and strong �rst integrals. We prove that the angular momentum is preserved under stochastic
perturbation and give rise to a weak �rst integral of the stochastic two-body problem.

5.1 De�nitions

Let dx/dt = f(x, t), x ∈ Rn (?) be an ordinary di�erential equation. A function I : Rn 7→ R is called a �rst

integral of (?) if for all solutions xt of (?) we have I(xt) = I(x0) for all t. If I is su�ciently smooth we deduce
dI(xt)
dt = 0.

A natural generalisation of this de�nition in the setting of stochastic di�erential equations is given for
example in Misawa (1999) (see also Bismut (1981),Cresson-Darses (2007a),Cresson-Darses (2007b) and J.A.
Lázaro Camí (2008),p.52):
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Strong �rst integral A function I : Rn → R is a strong �rst integral of (4.1) if for all solutions Xt of (4.1),
the stochastic process I(Xt) is a constant process, i.e. I(Xt) = I(X0) or d(I(Xt)) = 0.

Such a property is very strong and classical �rst integral are usually not preserved in the strong sense.
However, a weaker property can be looked for:

Weak stochastic �rst integral A function I : Rn → R is a weak stochastic �rst integral of (4.1) if for
all solutions Xt of (4.1), the stochastic process I(Xt) satis�es E(I(Xt)) = E(I(X0)) where E denotes the
expectation.

This condition implies that I(Xt) = I(X0) almost surely.

5.2 Variation of the angular momentum and the energy

Using formulas (2.2) and (2.3) for the angular momentum and energy, the multi-dimensional Itô formula with

XT
t = (r, φ, v, w) and BT

t =
(
Brt , B

φ
t

)
leads to

dM(Xt) = mrσφdB
φ
t , dH(Xt) = mrvσrdB

r
t +mrwσφdB

φ
t +

m

2

[
σ2
rr

2 + σ2
φ

]
dt.

for the behavior of these �rst integrals over solutions of the stochastic two-body problem. As expected, there is
no persistence of the angular momentum or energy integral in the strong sense.

Remark The strong conservation of the angular momentum is broken by our assumption that an isotropic
tangential force exists, i.e. σφ 6= 0 (see §.3, equation (3.3)).

However, we have the following weak conservation property :

Lemma 5.1 The angular momentum is a weak �rst integral of the stochastic two-body problem.

The proof is simple and relies on classical properties of the Brownian motion.

Proof LetXt be a solution of the stochastic two-body problem. We haveM(Xt) = M(X0)+
∫ t
0
mrσφdB

φ
t where

M is the angular momentum function. Using the property that E
(∫ b

a
fdB

)
= 0 for all f su�ciently smooth

(see Øksendal (2003),De�nition 3.4,p.18 and Theorem 3.7 (iii),p.22), we deduce that E(M(Xt)) = E(M(X0))
which concludes the proof.

This result does not extend to the energy �rst integral. This is due to the existence of a non-trivial determin-
istic term emerging in the Itô formula. Precisely, we have H(Xt) = H(X0) +

∫ t
0
mrvσrdB

r
t +

∫ t
0
mrwσφdB

φ
t +

m
2

∫ t
0

[
σ2
rr

2 + σ2
φ

]
ds. Taking expectation, we obtain

E(H(Xt)) = E(H(X0)) +
m

2
E

(∫ t

0

[
σ2
rr

2 + σ2
φ

]
ds

)
.

The second term is non zero so that the energy �rst integral is not preserved even in a weak sense.
The conservation of the angular momentum in the weak sense will be an important information in order

to perform simulations because it will be the only quantity that we could check his conservation during the
simulations.

6 Simulations

The simulation of stochastic di�erential equations is more di�cult than in the deterministic case (see Kloeden
et al. (1999) and Higham (2001)). In the sequel, we use a stochastic Runge-Kutta of weak order 2 due to N.J.
Kasdin and L.J. Stankievech in Kasdin et al. (2009). The term of weak order refers to the error of the stochastic
numerical scheme with respect to the expectation of the solution computed.
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Our simulations are made with the same initial conditions and integration time used by Sharma & Parthasarathy
(2007), which are :

r(0) = 1 AU, (6.1)

φ(0) = 1 rad, (6.2)

v(0) = 0.01 AU/TU, (6.3)

ω(0) = 1.1 rad/TU, (6.4)

σr = 0.0121 TU−3/2, (6.5)

σφ = 2.2× 10−4 AU.TU−3/2, (6.6)

where AU is the Astronomical Unit which is the Earth-Sun distance and TU is the Time Unit which is approx-
imately 58 days. These units are called canonical units (see Bate et al. (1971)).

The initials conditions are chosen such that the unperturbed motion is an ellipse and the di�usion constants
σr and σφ are chosen such that the stochastic perturbing force is proportional to 1/10 of the gravitational force
at the initial time. Numerical integration are performed over 15TU like in Sharma & Parthasarathy (2007). The
unperturbed trajectory as well as the perturbed one are plotted in Fig. 3 with color green and red respectively
and we still use the same colors on �gures to refer to the unperturbed and perturbed case. The accuracy

Fig. 3. Left: Unperturbed case. Right: Perturbed case.

of the integrator can be tested by looking for the preservation of the weak �rst integral given by the angular
momentum. Expectations are computed using a Monte Carlo method. Our result indicates a very good behavior
of the integrator with respect to weak �rst integrals (see Fig. 4). The dynamical behavior of the semi-major
axis, the eccentricity and the pericenter angle for the trajectory of the perturbed motion corresponding to Fig. 3
is given in Fig. 5 as well as the expectation of these elements in Fig. 6.

7 Stochastic planar Gauss equations

To study the variations of orbital elements we derive a stochastic version of the classical Gauss equations (see
Goldstein (2002),p.96-103). The strategy to obtain these equations in the planar case is as follows. We consider
a stochastic perturbation per unit of mass in polar coordinates

d~vP =

(
R̄
T̄

)
dt+ (R̃, T̃ ) · dB (7.1)
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Fig. 4. Left: E(M(Xt)). Right: E(H(Xt)).

Fig. 5. Left: a the semi-major axis. Center: e the eccentricity. Right: ω the pericenter angle.

Fig. 6. Left: E(a). Center: E(e). Right: E(ω).

where R̃ =

(
R̃1

0

)
,T̃ =

(
0

T̃2

)
and dBt =

(
dBRt
dBTt

)
, with BRt and BTt being independent. In our example

we have R̄ and T̄ equal to zero, R̃1 = rσr and T̃2 = σφ.

The variation of orbital elements is derived from the well known relations (see Goldstein (2002) (3-57) p.96,
(3-58) p.97 and (3-84 p.103) )

H =
−k
2a
,
M2

mk
= a(1− e2), tanω =

Ax
Ay

, (7.2)

where Ax and Ay are the component of the Laplace-Runge-Lenz vector in (S, ~x, ~y). Using Itô formula, we obtain
the following stochastic Gauss equations in the planar case

da =

[
2a3/2√
µ(1− e2)

(
e sin fR̄+ (1 + e cos f)T̄

)
+
a2

µ

(
R̃2

(
1 +

4e2 sin2 f

1− e2

)
+ T̃ 2

(
1 +

4(1 + e cos f)2

1− e2

))]
dt
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+
2a3/2√
µ(1− e2)

(
e sin fR̃+ (1 + e cos f)T̃

)
· dB (7.3)

de =

[√
a(1− e2)

µ

(
sin fR̄+

(
cos f +

e+ cos f

1 + e cos f

)
T̄

)
+
a(1− e2) cos2 f

2µe
R̃2

+
a(1− e2)

µe

(
2− cos f

2

(
2 + e cos f

1 + e cos f

)(
cos f +

e+ cos f

1 + e cos f

))
T̃ 2

]
dt

+

√
a(1− e2)

µ

(
sin fR̃+

(
cos f +

e+ cos f

1 + e cos f

)
T̃

)
· dB (7.4)

dω =

[√
a(1− e2)

µ

1

e

(
− cos fR̄+ sin f

(
2 + e cos f

1 + e cos f

)
T̄

)
+

a
(
1− e2

)
µe

[
sin 2f

2e
R̃2 − sin f

(1 + e cos f)2

(
1 +

cos f

e
(2 + e cos f)2

))
T̃ 2

]]
dt

+

√
a(1− e2)

µ

1

e

(
− cos fR̃+ sin f

(
2 + e cos f

1 + e cos f

)
T̃

)
· dB (7.5)

where µ = k
m and the contribution due to the stochastic perturbation is written in red. We refer to F. Pierret

(2013) for the general case.

8 Conclusions

The stochastic two-body problem displays a fast change of the dynamics with respect to the classical one despite
the smallness of the stochastic perturbation. This result reinforces the necessity to take into account usually
ignored stochastic phenomenon in order to obtain relevant predictions on the long term dynamical behavior
of dynamical systems. This conclusion is fundamental for the study of the long term evolution of the solar system.

As a consequence, the following list of open problems can be studied :

• Stochastic perturbations induced by the deformation of bodies. As a �rst step, we would like to study a
J2-problem (see Brouwer, D. and Clemence, G. M. (1961)) with a random or stochastic J2 constant and
its in�uence on the rotation of the earth.

• In order to perform simulations over a very long time, we need to construct high order stochastic Runge-
Kutta type integrators.
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