Star formation efficiency in the outer filaments of Cen A

Quentin SALOME (quentin.salome@obspm.fr)

Philippe Salomé, Françoise Combes, Stephen Hamer, Ian Heywood

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

AGN POSITIVE FEEDBACK

AGN are supposed to regulate gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies.

In a previous work [1], we studied two of the most famous example of jet-induced star formation: 3C 285/09.6 [2] and Minkowski's Object [3]. Both star forming regions stand at least on or even above the KS-law when using a standard CO/H_2 conversion factor. The depletion time is found to be < 1 Gyr in 3C285/09.6 and down to < 20 Myr for the Minkowski's object.

MUSE - METALLICITY MAPS

We used excitation lines from MUSE, to estimate the oxygen abundances in the Centaurus A filaments.

HERSCHEL/GALEX SFR - KENNICUTT-SCHMIDT LAW AND JET-CLOUD INTERACTION

a distance of ~ 15 kpc from the galaxy, at the intersection of possible jet-cloud interaction. • CO(1-0) and CO(2-1) with SEST [4]: a \sim $2' \times 2'$ map covers the intersection of the outer filament with a HI shell.

We estimated the L'_{CO} with the formula from [8] and derived molecular gas masses of a few $10^5 - 10^6 M_{\odot}$ in each of the 44" (~ 0.72 kpc) SEST beam; for a total molecular gas mass of ~ $1.4 \times 10^7 M_{\odot}$. The UV and TIR luminosities can be interpreted as measures of the star formation rate [9]. The derived SFR have values of a few $10^{-5} - 10^{-4} M_{\odot}$.yr⁻¹, for a total SFR of ~ 2×10⁻³ M_☉.yr⁻¹ in the whole region.

Star formation seems to take place in the outer filament exactly like inside normal star forming galaxies, but with a very small SFR, likely due to the small molecular gas amount.

Some regions have a standard star formation efficiency with depletion time scales of ~ 1 Gyr, whereas other are less efficient (depletion times of ~ 10 Gyr). There is a hint of morphologically-driven star formation in the filaments.

ALMA - RESOLVED MOLECULAR GAS MAPPING

3 clumps (d = $2'' \sim 30$ pc) in CO(2-1): $S_{CO}\Delta v \sim 3.0 \text{ Jy.km.s}^{-1} \Rightarrow$ $M_{\rm H_2} \sim 9.9 \times 10^4 \, \rm M_{\odot}$. SFR is estimated from FUV+FIR emission: ~ $1.3 \times 10^{-5} M_{\odot}.yr^{-1}$ \Rightarrow depletion time of ~ 7.6 Gyr.

Clump	v ₀	S _{CO}
	$({\rm km.s^{-1}})$	$(Jy.km.s^{-1})$
1	~ 230	1.15 ± 0.53
2	~ 220	0.95 ± 0.51
3	~ 210	0.87 ± 0.47
Clump	Мн.	offset
Clump	$(10^4 M_{\odot})$	
1	3.8 ± 1.7	5.5", -17.25"
2	3.1 ± 1.7	4.25", -18.5"
3	2.9 ± 1.5	2.25", -19.5"

• **FIR data** from Herschel with PACS and SPIRE: flux extraction following the method of [5]. • **FUV emission** with GALEX [6]. • HCN(1-0) and $HCO^+(1-0)$ with ATCA on June 2014: synthesized beam width of ~ 3.1''; data reduction with mirias; rms of ~ 1.0 mJy (not detected).

• MUSE observations on the VLT [7]: two fields; optical excitation lines

• ALMA archive CO(2-1) data: synthesized beam width of $\sim 2''$

HCN was not detected: $S_{HCN}\Delta v <$ 67 mJy.km.s⁻¹ \Rightarrow L'_{HCN} < 3.2 × $10^3 \text{ K.km.s}^{-1}.\text{pc}^2 \text{ (f}_{\text{dense}} \lesssim 6.7\%).$

References

[1] Salomé Q. et al. 2015, A&A, 574, A34 [2] van Breugel W. J. M. & Dey A. 1993, ApJ, 414, 563 [3] van Breugel W. J. M. et al. 1985, ApJ, 293, 83

Charmandaris V. et al. 2000, A&A, 356, L1 [4] Rémy-Ruyer A. et al. 2013, A&A, 557, A95 [5] [6] Neff S. G. et al. 2015, ApJ, 802, 88

- [7] Santoro F. et al. 2015, A&A, 575, L4
- [8] Solomon P. M. et al. 1997, ApJ, 478, 144
- [9] Kennicutt R. C. & Evans N. J. 2012, ARA&A, 50, 531