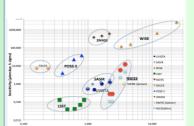
NEXT GENERATION OF INFRARED SKY SURVEY WITH AN OFF-AXIS TELESCOPE FROM ANTARCTICA

Isabelle Vauglin⁽¹⁾, Maud Langlois⁽¹⁾, Gil Moretto⁽²⁾, Nicolas Epchtein

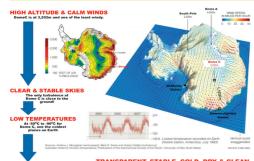
(1) Centre de Recherche Astrophysique de Lyon, INSU-CNRS, Saint-Genis Laval, Franc (2) IN2P3-IPNL, Lyon, France



ANGISS project adresses the scientific relevancy and technical feasibility of a New Generation Infrared Sky Survey (NGISS) from the Antarctic plateau. The project proposes an innovative 2.5 m off-axis low emissivity, wide-field telescope with adaptive optics matching the outstanding atmospheric properties of the site. The major identified key-programs are (1) in the distant universe: high redshift galaxies and quasars, photometric redshifts at z > 1.5 and type Ia supernovae in dusty galaxies and (2) extragalactic stellar populations: synoptic time monitoring of stellar populations in the Magellanic Clouds and in galaxies of the Local Group.

Why a New Generation Infrared Sky Survey?

Top Science drivers that will take benefit from a NGISS


- **Distant Universe**
- ✓ Early Universe: high redshift galaxies, probing epoch of reionization; cosmic distance scale, Pop. III stars
- ✓ Type Ia Sne in dusty galaxies (survey and light curve) follow-up)
- **Extragalactic stellar populations**
 - ✓ Synoptic time monitoring of Magellanic Stellar populations (extension of VMC- deeper- λ>2.3)
- Low mass stars, exoplanets and small bodies of the Solar System
 - ✓ Stellar: extreme brown dwarfs/free floating planets (field) and SFR
 - ✓ Small bodies of the Solar system (complementary to LSST)

Preparing, accompanying and following-up ELT IR key-programs

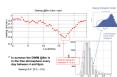
- 2MASS not deep enough, NGISS should supersede VISTA (sky coverage, sensitivity, angular resolution, spectral range)
- NGISS coverage: 5 to 15 000 square degrees (Southern Sky)
- High sensitivity: gain ~ 1000 with respect to 2MASS
- High contrast → off-axis telescope proposed (see
- High angular resolution: 0.3" or better (thanks to site quality + GLAO)
- Extend spectral coverage beyond 2.3 µm (in particular the K dark and L windows); bridging ground/ space surveys (WISE, Spitzer, ...)

Antarctica, an attractive site for infrared imaging surveys

- · Great seeing and atmospheric stability
- Great IR transmission

Monthly average range of PWV from 0.72(+/-0.20)mm in December

to 0.26(+/-0.1)mm in winter period


The K dark window is optimal The L_{short} (3.2-3.6µm) window opens

· Low IR thermal background

Concordia DOME C SITE QUALITY at a glance

WINTER: Above that seeing ~ 0."36

TELESCOPE DESIGN:

An OFF-AXIS TELESCOPE

To minimize thermal emission and diffraction

SCIENCE CASE COMPLIANCE:

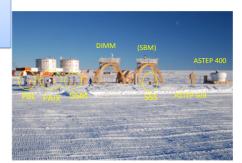
- → Exploration of the distant univers and nature of the dark matter
- →Discovery of extrasolar planets
- → Characterization of stellar populations

Science cases call for

- 1) the highest possible dynamic range for photometry
- 2) the high angular resolution
- 3) a wide-field imaging

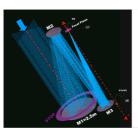
in optical and thermal infrared

The only concept of telescope that could comply with science cases and capitalize such unique site Dome C performances is


A THREE-MIRROR OFF-AXIS TELESCOPE DESIGN

optimized for low scattered light

low emissivity


wide field of view


Telescopes already in operation at Concordia: ASTEP400: planetary transits (40 cm) IRAIT: infrared telescope (80 cm)

Proposed concept of off-axis mirror for a 2.5 m NGISS (Moretto et al., 2012, SPIE vol. 8444).

Assessment study (Lanalois et al.), submitted to the French ANR 2013 and 2014 + H-2020).

