

SF2A 2015 - Préparation scientifique JWST

OBSERVING DEBRIS DISKS & PLANETS WITH THE JWST/NIRCAM CORONAGRAPH

<u>Jérémy Lebreton</u>, Chas Beichman & the NIRCam science team,

Incl. John Krist, Tom Greene

Klaus Hodapp, Mike Meyer

Tom Roellig, Josh Schlieder

John Stansberry, John Stauffer

& Marcia Rieke (PI)

LAYOUT

- 1. Dusty exoplanetary systems
- 2. The case of η Corvi
- 3. A simulator for the NIRCam coronagraph
- 4. Disk imaging
- 5. Planet imaging

DUSTY EXOPLANETARY SYSTEMS

DEBRIS DISKS ARE KUIPER- AND MAIN-BELT **ANALOGUES**

- Optically thin disks
- Main Sequence stars (>10⁷ years)
- Second-generation grains, gas poor
- Driven by photo-gravitational forces

Science questions for NIRCam:

- Are there structures in disks and do they trace planets?
- Can we image disk-shaping exoplanets?
- Are there ices in exo-asteroids / exo-KBOs? Where are the icelines? (H₂O, CO, CO₂, NH₃)
- How does scattering compare to thermal emission? (dust optics & physics/dynamics, disk geometry)
 67P/Churyumov-Gerasimenko

The case of η Corvi: A nearby (18.2 parsec) F2V star with huge mid- and far-infrared excess given its age of ~1.4 Gyr

Lebreton et al., subm. to ApJ

Spitzer-IRS spectroscopy probes warm silicate dust in the inner disk

Keck Interferometer nulls across the N-band (4 baselines) pinpoint the warm dust location

The case of η Corvi: Radiative transfer modeling of the outer belt and the inner exozodiacal disk

Lebreton et al., subm. to ApJ

• Fit to resolved Herschel PACS 70/100/160µm imaging + SED from near-IR to mm

→ a «classical», ice-free belt in collisional equilibrium with a mass comparable to much younger disks

Annulus at r_0 = 133 AU a_{min} = 5 μ m dn(a) \propto a^{-3.5}da M = (0.7-2.9) x 10⁻² M_{\oplus}

→ Inner disk (exozodi): "Abnormally" high albedo Forsterite at 0.2 AU $(\chi^2 = 1.7)$ or Olivine at 0.8 AU $(\chi^2 = 2.9)$ $a_{min} \sim 0.8 - 1.2$ um

The mass of a 200km asteroid just in dust at 0.2 AU!

(Likely an exo-LHB: Lisse et al. 2012)

• The first LBTI data validate our conclusions and favor a ~0.2AU location (Defrère et al 2014)

η Crv: too faint for NIRCam but a great target for MIRI

Lebreton et al., subm. to ApJ

Planets? A companion is predicted to sculpt the belt at 5.3" (1Jupiter) to 6.5" (0.1 Jupiter)

NIRCam can detect a 2 Jupiter-mass planet in 1hour

THE NIRCAM CORONAGRAPH

NIRCam:

- Near-infrared imaging from 0.6 to 5µm (28 broad, medium and narrow filters)
- Angular resolution: 0.02" to 0.16"
- 2.2'x4.4' FOV, 31.7mas/pixel (SW) or 64.8mas/pixel (LW).

Coronagraph:

- ~4-6λ/D IWA (Jupiter at 4.5μm from 8.2pc)
- Suppress diffracted light ≤ 130nm WFE (throughput 18%)
- → Contrast: 10⁻⁵ (1") 10⁻⁸ (10")
 Tolerance to 2% pupil misalignment,
 <20 mas pointing error

Layout of the coronagraphic occulters on the mounting substrate HWHM=2\/D

HWHM = 0.40" (6 λ /D @ 2.1 μm)

HWHM = 0.64" (6 λ /D @ 3.35μ m)

HWHM = 0.82" (6 λ /D @ 4.3μ m)

HWHM_c = 0.27" (4 λ /D @ 2.1 μm)

HWHM_c = 0.58" (4 λ /D @ 4.6 μm)

After 6λ/D Spot Occulter No Aberrations After 4λ/D Wedge Occulter No Aberrations After 4\(\textit{\D}\) Wedge Occulter
JWST-level Aberrations

From Krist et al. 2007

Lyot stop for 6λ/D spot occulters

Lyot stop for 4λ/D wedge occulters

CORONAGRAPHIC PERFORMANCES VS SOURCE CONTRAST

10° roll, iterative roll subtraction, 1 or 0.25 nm wavefront change between rolls

Simulations from John Krist

NIRCAM CORONAGRAPH SIMULATOR

NIRCAM DEBRIS DISK SAMPLE SELECTION

- A limited number of debris disks have been spatially resolved, most of them in thermal emission (far-IR/ mm), only 23 disks have been resolved in scattered light (as of Jan. 2015: HST, ground)
- Select a limited sample of extended, high surface brightness debris disks
- Follow-up observations of HST disks: comparable contrast & resolution but in the 2-5 µm range with excellent PSF stability
- Disk stars are great targets for planet detection down to (sub-)Neptunian masses

SIMULATIONS FOR NIRCAM GTO TARGETS: EXAMPLE OF Q1 ERI

q¹ Eri (HD10647):

a 1.4Gyr debris belt (~4.8") around a F8V star at 17.4 pc hosting a Jupiter-mass planet $(M.sin(i)=0.93 M_J, b=2.03AU, e=0.1)$

100

SIMULATIONS FOR THE YOUNG EXO-KUIPER-BELT OF HD181327

Coordination with MIRI (IWA MIRI $1\lambda/D \sim NIRCam 4\lambda/D$)

EXOPLANET DIRECT IMAGING SIMULATIONS

HR 8799 b, c, d, e

HD 95086 R = 0.6 arcsec, Δ mag ≥ 9.2 (L' 3.8 um)

A SURVEY OF LOW MASS PLANETS ORBITING

M STARS IN WIDE ORBITS

(with J. Schlieder, C. Beichman, M. Meyer)

• NIRCam spot coronagraph at 4.4 μ m: excellent sensitivity to planets >10 AU and M>0.1 M_{jup} down to M_{F440W}^* = 23.5 mag

• Cold star CONDO03 models. MC simulations assuming every system has 1 planet:

10% inside 5 AU, remainder between 5-200 AU. Masses 0.1<M< 5 $\rm M_{\rm jup}$.

• 376 stars have P>25% of detecting a planet. Top 25 stars: P = 57%.

• A survey of top 25 would yield 14 planets down to 0.1M_{Jup} at 10 AU (MIRI: 11 planets. NIRISS: 10 planets. GPI: 5 planets)

NIRCam average planet: ⟨Mass⟩= 0.45 MJup ⟨Age⟩ = 65 Myr, ⟨SMA⟩ = 59 AU

Simulated images of BD+012447 (M2.5, 130 Myr AB Doradus, 7.1 pc)

0.5, 1, and 5 M_{Jup} planets at 1", 5", and 9"

CONCLUSIONS

Detailed models of n Corvi (soon in ApJ):

- A massive 133AU-wide exo-Kuiper Belt (Herschel)
- Its inner exozodiacal disk is closer than previously thought (0.2) AU: KI, LBTI, IRS) and abnormally bright (high-albedo forsterite)
 - Good candidate for MIRI imaging

AU Mic, M1Ve, F_{disk}/F_{star} =7.7e-3 91pc, 35AU

HD181327, F5.5V, F_{disk}/F_{star}=6.0e-3

51.8 pc, 90 AU

The Moth, G8Vk, F_{disk}/F_{star} =2.5e-3 4.5pc, 61AU

HD 107146, G2V, F_{disk}/F_{star}=1.0e-4 28.5pc, 130AU

HD 92945, K6V, F_{disk}/F_{star}=7.7E-4 21.55pc, 45AU

NIRCam coronagraphic imaging of extrasolar Kuiper Belts

- Follow-up of HST disks at new λ
 - Science driver for NIRCam and MIRI collaborative program
- **Understanding material properties**
 - Scattered vs. thermal light
 - A census of ices / ice lines
- **Probing dust structures**
 - Collisions & dynamics
 - Shepherding planets
 - Planet direct imaging

HD 4796A, A0V, F_{disk}/F_{star}=5.0e-3 67pc, 140AU

HD 32297, A7V, F_{disk}/F_{star} =7.6e-3 105pc, R $^{\sim}$ 120AU

→ Simulations are being performed for a sample of 8 objects (~50 hours)

HD 10647, G2V, F_{disk}/F_{star}=1.0E-4 17.4pc, R~75AU