GALAXIES REIONISING THE UNIVERSE

Journées SF2A 2015 - Session JWST

Maxime Trebitsch June 2, 2015

INTRODUCTION: THE EPOCH OF REIONISATION

Reionisation by the first galaxies

1

UNDERSTANDING THE REIONISATION

- · Are there enough photons emitted to sustain reionisation?
- · How do the ionising photons escape the galaxies?
- · How do the ionised bubbles grow and overlap?

UNDERSTANDING THE REIONISATION

- · Are there enough photons emitted to sustain reionisation?
- → How do galaxies form their stars?
 - · How do the ionising photons escape the galaxies?
- \rightarrow How do the ionising $f_{\rm esc}$ evolves?
 - · How do the ionised bubbles grow and overlap?

We use numerical simulations to address these questions.

UNDERSTANDING THE REIONISATION

State of the art

- Ionising efficiency of galaxies quantified by f_{esc}
- So far, models favor reionisation by small galaxies
- · ... but no strong constraints

What do we need to simulate small high-z galaxies?

- · Cosmological structure formation (DM+hydro)
- + Very high resolution to resolve the ISM
- + Physical model for star formation and supernova feedback
- + Follow the ionising radiation emitted by the stars

What do we need to simulate small high-z galaxies?

- · Cosmological structure formation (DM+hydro)
- + Very high resolution to resolve the ISM
- + Physical model for star formation and supernova feedback
- + Follow the ionising radiation emitted by the stars

Our solution

- · RAMSES code with RHD = RAMSES-RT (Rosdahl+2013)
- · Cosmological zoom-in technique

Zoom-in technique

Radiative Hydrodynamics Simulations with RAMSES-RT of 3 haloes $(M_{vir}=10^8,~10^9,~2.5\times10^9M_{\odot})$

- · High resolution
 - · Dark matter: $m_{\rm DM} \simeq 10^3 M_{\odot}$
 - Gas: $\Delta x \simeq 10 20 \text{ pc}$
 - Stars: $m_{\star} \simeq 120 M_{\odot}$
- · State of the art subgrid models
 - · Gravoturbulent star formation (Devriendt, Slyz, Kimm, in prep.)
 - · Resolved mechanical feedback (Kimm & Cen, 2014)
- · Ionising radiation propagated in 3 bins (HI, HeI, HeII)

 $2 \times 10^9 M_{\odot}$ halo at $z \simeq 6$

ANALYSIS

BURSTY ASSEMBLY OF SMALL GALAXIES

Star formation happens by bursts

CONSEQUENCES ON THE IONISING EFFICIENCY

Correlation with the SN feedback events

CONSEQUENCES ON THE IONISING EFFICIENCY

Strong correlation between $f_{\rm esc}$ and the SFR

FLICKERING OF SMALL HIGH-Z GALAXIES

Out of the halo, IGM can recombine between two bursts

FLICKERING OF SMALL HIGH-Z GALAXIES

Out of the halo, IGM can recombine between two bursts

OBSERVATIONAL PERSPECTIVES

OBSERVATIONAL PERSPECTIVES

Small high-z galaxies might be observed by intermittence

OBSERVATIONAL PERSPECTIVES

Luminous galaxies are in a LyC-leaking phase

CONCLUSIONS

CONCLUSIONS

- · Simulating the sources of the reionisation is hard (high resolution
 - + RHD needed), but can be done with RAMSES-RT.
- · At high z, in the low mass regime, SF is very bursty.
- \cdot $f_{\rm esc}$ varies a lot, and is strongly correlated to SF and feedback.
- · First (simplified) predictions for *JWST*: UV magnitude can reach $M_{1500} = -16$.